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ABSTRACT 

The feasibility of taking practical  engineering constraints into consider- 
ation when designing optimal nonlinear feedback control systems is 
investigated. The constraint of interest  is a s t ructural  one which guar- 
antees that any solution obtained subject to this constraint will be in a 
form for  which there is a simple, direct ,  and easy means of implemen- 
tation. 
single -output function generators and ideal summers)  f rom which the 
feedback control law will be constructed is specified while leaving the 
various synthesis functions f ree  to be determined optimally. 
manner a structurally constrained optimal control problem (SCOCP) is 
formulated; the thesis  establishes that such problems can be solved and 
that their  solution is computationally feasible. A variety of optimal and 
suboptimal design procedures with explicit computational algorithms a r e  
developed for solving the SCOCP and examples illustrating their  appli- 
cation a r e  presented. 

A sequence of s t ructural  forms  [interconnections of single -input- 

In this 

In addition to developing procedures for solving the SCOCP, the thesis 
contains two major  theoretical  contributions. First, an expression 
relating the suboptimality of a control law (i. e . ,  the deviation between 
Us(x)  and U*(x)) to the suboptimality of its cost (i. e. , the deviation 
between J , ( x ) a n d  J"(x)) is derived. This expression is used to estab- 
lish a bound on the suboptimal cost in t e r m s  of only the bound on the 
deviation between the suboptimal and optimal control. Second, a set of 
sca la r  stability bounds is derived which specify the range over  which 
the sca l a r  value of the control can va ry  at each point in the state space 
and still produce a system which is  asymptotically stable. 
a r e  used to establish cer ta in  stability properties of optimal nonlinear 
systems.  

These bounds 
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CHAPTER I 

INTRODUCTION 

1. 1 Introduction 

During the past  decade optimal control theory has  emerged a s  a 

new and sophisticated approach to  control system analysis and design. 

A prime motivation for  this new approach has been its potential in  estab- 

lishing a standard reference o r  index of performance, as well as pro- 

viding a method for  computing the "best" o r  "optimal" control with 

respect t o  the specified index for  a given dynamical system. The l i ter-  

a ture  3' '' contains a large number of interesting examples to which the 

theory has  been successfully applied. 

Despite the fact that theoretical  techniques for  solving many types 

of optimal control problems exist, the application of the theory to the 

solution of problems of engineering significance and to the design of 

engineering systems has  been ra ther  slow in gaining acceptance. 

this may be partly attributed to  the mathematical  complexity of the prob- 

lem formulation and the sophistication required to utilize effectively the 

various computational techniques, a more  fundamental cause is  that the 

optimal feedback control law fo r  many problems invariably turns  out to 

be a nonlinear multivariable function - a solution which is not amenable 

to d i rec t  or simple means of implementation. This is in contradistinc- 

tion to conventional servo theory which has  found wide acceptance and 

utility because of the simplicity with which it can be directly implemented. 

While 
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F r o m  an  engineering viewpoint, of course,  theory is only a s  good 

a s  the extent to which it can be applied; and mathematical "solutions" 

which a r e  impossible o r  impractical  to implement o r  approximate a r e  

simply not "solutions" at all. 

be to attempt to bridge the gap between "theory" and "practice" by 

imposing additional constraints upon the optimization problem which will 

guarantee that any solution so obtained will be in a form for which there 

a r e  simple, direct ,  and practical  means of implementation. 

Therefore, the purpose of this thesis  will 

This thesis will concentrate exclusively on the design of optimal 

There are several  reasons and suboptimal feedback control systems. 

for our interest  in feedback rather  than open-loop control. 

back controllers have cer ta in  inherent advantages over open-loop con- 

t rol lers .  

back controller instead of a nominally equivalent open-loop one * 

advantage of feedback controllers occurs  whenever the system is  subject 

to noise, inexact initial condition data, o r  other disturbances. In such 

cases  the feedback controller will cor rec t  for  the trajectory deviations 

which result  while the open-loop controller will not. Second, feedback 

controllers may be considerably more  desirable f rom an  implementation 

viewpoint. 

F i r s t ,  feed- 

The sensitivity to plant variations is reduced by using a feed- 

Another 

The possibility of constructing a feedback controller with a 

small  number of inexpensive analog components is considerably more 

attractive than an  open- loop implementation requiring a digital computer 

with considerable data storage capacity. Third, the problem of designing 

optimal feedback controllers subject to s t ructural  constraints is of con- 

siderable theoretical interest;  the majority of the previous research  has  

concentrated on solving the open- loop optimization problem and relatively 
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little attention has been directed toward implementation. 

this thesis will concentrate exclusively on the design of optimal and sub- 

Therefore, 

optimal feedback control systems. 

1 .2  Historical Perspective 

Despite the extensive r e sea rch  which has been conducted on optimal 

control systems in the past decade, the vast  majority of the effort has 

been concentrated on solving the optimization problem and little concern 

has been directed toward the problem of implementation. Nevertheless, 

a few significant resul ts  have been obtained. 

t ime -optimal problem, Neustadt2 has  developed a method of combining 

a rather  small amount of precomputed information with "on-line" com- 

putation to reduce significantly the complexity of the "on-line 'I algorithm. 

While this is limited to time -optimal problems with computer implemen- 

tation, it does provide a practical  implementation scheme for  a large 

class  of such problems. 

Considering the general  

MeIsa and Schultz 21 have developed a method for  the closed-loop, 

approximately time-optimal control of a c lass  of l inear systems with 

total  effort constraint. 

of the Hamilton- Jacobi equation called eigenvector sca la r  products, 

requires  that the controller-computer solve only algebratic equations - 

not two-point boundary value problems However, the method provides 

no measure  of the degree of suboptimality of the implementation scheme. 

The method, based on a special  c lass  of solutions 

ReKasius has developed a suboptimal design procedure in which 

the control is res t r ic ted to be a finite polynomial in the state variables.  

This procedure was formulated a s  solving a sequence of suboptimal 
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problems which converge to the t rue  optimal problem and has  the advan- 

tage that it allows one to observe the increasing complexity of the control 

law at  each stage. Thus the procedure may be terminated a t  any desired 

level of control law complexity. However, the resulting control is not 

optimal; in fact, it is not even the best  suboptimal approximation at the 

given level of complexity. 

Durbeck 61 has discussed an  approximation method based on assuming 

a solution V(2)  to the Hamilton-Jacobi equation having a known form with 

unknown coefficients. The f o r m  selected constrains the resulting control 

to be a finite polynomial in the state variables.  

a r e  determined by a minimization procedure.  However, a s  Merr iam 

has noted, accurately approximating V(x)  - does not necessarily result  in  

an  accurate approxima,tion to the optimal control which depends on the 

partial  derivatives of V(x) with respect  to the state variables.  

such a procedure may give r i s e  to limit cycles and other instability prob- 

lems a s  well a s  to a general  degradation in the performance of the system 

constructed from these approximations. 

The coefficients of V(x) 

24  

In fact, - 

Smith1' has presented a heurist ic method for  designing easily 

implemented qua s i - optimal, minimum- time co ntro lle r s for  high- order  

dynamic systems. The bang-bang controller is obtained by least-  squares 

fitting points on the optimal switching surface with an easily implemented, 

linear - segment switching surface e This method is attractive because 

least-  squares approximation is an  analytic procedure which is readily 

applicable to high-order dynamic systems.  However, choosing the coef- 

ficients of a quasi-optimal surface to optimize a least-squares  fitting 

cri terion is not exactly equivalent to minimizing the response time. As 
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a resul t  limit cycles and other undesirable phenomena may result, and 

considerable engineering judgement must be exercised in the application 

of this approach. 

Saridis and ReKasius 22 consider the interesting and practical  

problem of a l inear plant with an infinite -time, integral-type, quadratic 

performance index and state constraints - 
based on properties of the optimal constrained t ra jector ies  and utilizes 

a dual-mode controller to switch between the "constrained" and "uncon- 

strained" portion of the state space. 

method is that the control law can be synthesized from analog devices - 

operational amplifiers, diodes, and res i s tors .  

Their synthesis scheme is 

One major advantage of their  

Longmuir and Bohn" generalize Smith's l o  approach and consider 

synthesizing general  suboptimal feedback control laws. 

the suboptimal control is assumed which is a l inear combination of 

suitably chosen basis  functions of the state variables.  

multipliers for these functions a r e  determined by the minimization of a 

mean- square e r r o r  using data obtained f rom numerically computed 

optimal t ra jector ies .  

appropriate o r  optimal basis  functions; hence, the resulting control will 

in general  not be the best  suboptimal approximation at the given level of 

complexity. 

A structure for 

The coefficient 

However there  i s  no procedure for selecting the 

Debs44 considers the case of l inear time-invariant systems in 

which the control law is restr ic ted to be l inear.  The cost functional 

(containing t e r m s  which a r e  quadratic in the control and quadratic and 

higher-than-quadratic in the state) is averaged over a quadratic surface 

in the state space. A method for determining the l inear control law 
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which minimizes this ’ averaged” cost  is developed. However, this 

method is only applicable to l inear systems. 

While there have been some scattered resul ts  on the implemen- 

tation of various types of optimal and suboptimal controls (particularly 

time-optimal ones), there are few approaches that have broad applica- 

bility. In addition, most  existing methods possess  serious defects - 

the generation of limit cycles by the prescribed control law, lack of 

estimation of suboptimality, inability to guarantee that the prescribed 

control is the best at  the given level of complexity, e tc .  

the author feels that additional research  on the practical  implementation 

of optimal and suboptimal control laws is needed. 

Therefore, 

1 . 3  Outline of the Thesis 

The purpose of this thesis is to  attempt to make optimization 

theory more relevant to the design of engineering systems.  

be accomplished by incorporating s t ructural  constraints directly into 

the optimization problem which will guarantee that any solution obtained 

subject to these constrains will belong to a specific c lass  of feedback 

s t ructures  for  which there  is a simple and direct  means of implemen- 

tation. 

we shall  res t r ic t  our  attention to a specific class of practical, easily 

implemented, feedback s t ructures  - interconnections of single -input- 

single-output (SISO) function generators and ideal summers  /. 

of s t ructures  is appealing f rom both a theoretical and practical  view- 

point, The recent mathematical resul ts  of Kolmogorov, 2 5 - 2 6  Lorentz, 

and Sprecher 2 8 - 3 2  have established that such SISO configurations are  

This will 

In o rde r  to definitize the problem and obtain meaningful results,  

This c lass  

3 7 - 3 9  



capable of representing any continuous function of n variables.  

synthesis functions required by their  representation techniques a r e  con- 

tinuous; unfortunately however, they a r e  extremely "wiggly" (in fact, 

nowhere differentiable) and hence difficult to implement. 

the fact that such s t ructures  a r e  capable of representing a l l  continuous 

multivariable functions with continuous but non-differentiable synthesis 

functions provides a strong indication that such s t ructures  with smooth 

synthesis functions would be able to repre  sent, o r  accurately approxi- 

mate, a wide c l a s s  of multivariable functions. These SISO structures  

a r e  also appealing f rom an implementation viewpoint since they can be 

easily constructed by either analog (diode - res i s tor  networks) o r  digital 

(data point storage with computer interpolation) means. 

felt that such s t ructures  provide an  appropriate compromise between 

theoretical  completeness (the ability to represent  any continuous multi- 

variable function) and s t ructural  simplicity. 

The 

Nevertheless, 

Hence it is 

The thesis will establish that such structurally constrained opti- 

mization problems can be solved and that their  solution is computation- 

ally feasible. Both optimal and suboptimal techniques will be developed 

and several  examples illustrating the theory will be presented. In add- 

ition, several  fundamental propertie s of optimal systems and their  

relation to suboptimal ones will be established which not only provide a 

rigorous justification fo r  suboptimal design but, in addition, provide 

explicit bounds for evaluating the performance of suboptimal systems.  

The organization of the thesis is as follows: Chapter 11 has a 

twofold purpose; f i r s t ,  to formulate a precise mathematical statement 

of the optimization and stability problems which will be considered in 
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this thesis;  second, to provide an  analysis of the specific problems and 

peculiarities which resul t  f rom the imposition of s t ruc tura l  constraints 

upon optimization problems. 

In Chapter I11 we explore the relationship between optimal and 

suboptimal systems.  First, a n  expression relating the suboptimality 

of a control law (i. e . ,  the deviation between U (x) and U (x) - ) to the 

suboptimality of its cost (i. e . ,  the deviation between J (x) and J'*(x) - ) 

is derived. 

design. 

at each and every point - x the range over  which the sca la r  control can 

va ry  and still produce a system which is asymptotically stable. 

bounds a r e  then used to establish cer ta in  stability properties of optimal 

systems. 

* 
s -  

4. 

s -  

This leads directly to a useful procedure for  suboptimal 

Second, we derive a se t  of sca la r  stability bounds which specify 

These 

Chapter IV has a threefold purpose: First, to specify the set  of 

feedback s t ructures  (interconnections of SISO function generators and 

ideal summers )  which will form the constraint set of allowed implemen- 

tations; second, to outline and discuss  the general  approach that will be 

taken in solving the optimization and stability problems; and third,  to 

develop a mathematical  technique, gradient projection, in a f o r m  which 

will be required by the algorithms developed in the la ter  chapters for  

solving structurally constrained optimization problems. 

Chapter V concentrates on developing computational algorithms 

for suboptimal design. 

resul ts  of Chapter 111) a r e  developed and explicit computational algorithms 

a r e  presented. 

A variety of procedures (each based on the 
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In Chapter V I  we develop a gradient procedure for  solving s t ruc-  

turally constrained optimization problems. 

function which relates  the change in the cost  to the change in the scalar  

value of the feedback control law at each point is defined and an  analytic 

formula for its evaluation derived. 

A state space gradient 

This function is used to develop an 

explicit computational algorithm of the gradient type for  solving s t ruc-  

turally constrained optimization problems. 

Chapter VI1 is concerned with the stability problem. An explicit 

computational algorithm is developed for  solving the stability problem 

and an  example is presented to i l lustrate the application of the algorithm 

and the properties of the stability bounds. 

The concluding Chapter VI11 contains a summary of the resul ts  

obtained and recommendations fo r  future research .  

1 .4  Contribution of this Research 

The contribution of this research is twofold. First, the theoretical 

resul ts  of Chapter I11 relating optimal and suboptimal systems a r e  quite 

significant. 

form a conceptual basis for constructing severa l  practical  design algo- 

rithms, and provide a par t ia l  characterization of the properties of opti- 

m a l  systems.  Second, the algorithms developed in Chapters V and VI 

demonstrate the feasibility of incorporating practical  engineering con- 

s t ra ints  directly into the optimization problem. 

They provide a rig0 rous justification for  suboptimal design, 



CHAPTER 11 

THE STRUCTURALLY CONSTRAINED CONTROL PROBLEM 

2 . 1  Introduction 

This chapter has a twofold purpose: First, to formulate a precise  

mathematical statement of the optimization and stability problems which 

will be considered; second, to provide an analysis of the specific prob- 

lems and peculiarities which resul t  f rom the imposition of s t ruc tura l  

constraints upon optimization problems. 

Section 2 . 2  is concerned with formulating the structurally con- 

The c lass  of dynamical systems and cost strained control problem. 

functionals which will be considered is specified, the s t ruc tura l  con- 

s t ra ints  are characterized in a very general  manner, and the s t ruc-  

turally constrained optimal control problem (SCOCP) is formally stated 

Then a stability problem is  formulated whose solution can be used to 

analyze the stability and sensitivity of feedback control laws - partic- 

ularly those designed with the SCOCP formulation. 

In Section 2 . 3  we shall  examine the problems one encounters in 

attempting to modify the conventional optimization techniques (the Max- 

imum Principle,  Dynamic Programming, and the Hamilton- Jacobi 

equation) so that they will be applicable to structurally constrained 

optimization problems. 

by the Maximum Principle have meaningful structurally constrained 

equivalents However the fourth - the differential statement of the 

Principle of Optimality - cannot be formulated in  a computationally 

Three of the four Necessary Conditions given 

-10- 
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feasible manner.  Similarly, a par t ia l  differential equation of the 

"Hamilton- Jacobi type I '  (but without incorporating the Principle of 

Optimality) will be developed for the structurally constrained case.  

Because of the apparent impossibility of formulating a computationally 

feasible statement of the Principle of Optimality for problems subject 

t o  s t ructural  constraints, none of the conventional optimization tech- 

niques can be modified to solve such problems. Nevertheless, several  

of the equations which a r e  developed in this section will be of importance 

in the procedures developed in the la te r  chapters for solving structurally 

constrained optimization problems . 

2.2 Formulation of the Control Problem 

We wish to consider plants defined over a state space X which 

th a r e  nonlinear, controllable, time -invariant, n order  dynamical systems 

with a single input u(t) such that the state variables x1 (t), xZ(t) ,  . . . , xn(t) 

satisfy the equations 

k = f i [ x l ( t ) ,  ..., xn(t)]  t b i u ( t )  ; i =  1, ..., n (2.2.1) i 

o r ,  in vector form,  

k(t) = f[x(t)] t b u ( t )  ; vx E x ( 2 . 2 . 2 )  - 

where - f E D(2) and -- f (0)  = 0. In addition, we shall require that each 

state variable be measurable with its instantaneous value available for  

control purposes. We  wish to minimize cost functionals of the form 
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where g E D(2' is a convex, bounded, positive definite function with 

g@) = 0. 

will be called a Standard Optimization Problem (SOP). 

mulation is quite general  and can be used to model many pract ical  con- 

The origin is the ta rge t  set. The above problem formulation 

The SOP for- 

t ro l  problems. 

The f i r s t  problem which should be considered is  that of existence: 

Does a unique optimal feedback control law exist  f o r  every SOP? 

the system were linear, the answer would be affirmative; this has been 

established by Lee and Marcus 41 [ Theorem 11, page 22Qf and Bridg- 

If 

1 land [ Theorem 1, page 2681 . However, no existence theorem is 

known to the author f o r  the nonlinear case under consideration. There- 

fore, we shal l  assume the existence of a solution fo r  a l l  SOP problems 

under consideration while cautioning the reader  that this assumption 

may not be valid for  every SOP formulation. 

Since the system dynamics and cost functional a r e  time-invariant 
.L 

and the terminal  time is infinite, the optimal feedback control law U"(x) - 

will be a time-invariant function of the state only. 

an engineering viewpoint) this function U'(x) - will  in general  be a non- 

linear multivariable function - a solution which has no obvious, direct ,  

o r  simple means of implementation. 

Unfortunately (from 
.b 

In a few ground-based applications 42 involving low order  dynamical 

systems, a "brute-force" implementation scheme has been used in  which 

the sca la r  value of U (x) - is computed on a gr id  of points spanning the 

state space and then stored in a multi-dimensional a r r a y  in a computer 

data bank. Then the computer is used to interpolate between these data 

points to compute the cor rec t  value of the control as  the state of the 

:: 
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dynamical system moves through the state space. However, this approach 

requires  an expensive computer system with large data storage facilities 

and, hence, is of limited utility. Other schemes (such a s  approximating 

U"(x) - by a truncated multi - dimens io nal powe r se  rie s expansion) 

have been attempted, but all have met with a rather  notable lack of 

success.  

the unconstrained optimization problem to determine U (x); - and then 

approximate Uq'(z) by a suboptimal control U (x) which can be imple- 

mented by some feasible synthesis structure.  

6, 9, 10, 23 .L 

In a l l  of these procedures the approach has  been to first solve 
:;: 

.t. 

s -  

This procedure of separating the "control problem'' and the "imple- 

mentation problem" is a rather drast ic  suboptimal procedure; minimizing 

the cost  functional subject to a n  implementation constraint is not equiv- 

alent to  selecting the structurally allowable control which is the best 

mathematical f i t  to U " k ) .  In fact, the cost  corresponding to a control 

selected by this separation procedure can be significantly greater  than 

that of the optimal structurally constrained control law. Therefore, in 

this thesis we shall seek to incorporate the s t ructural  constraints directly 

into the optimization problem and hence obtain a solution which is  guar- 

anteed to be 

1) 

2 )  

representable by a prespecified synthesis structure 

the best  o r  optimal solution for this level of s t ructural  

complexity 

In the interest  of generality, we shall refrain a t  this point f rom 

explicitely defining o r  characterizing the type of s t ructural  constraints 

or implementation s t ructures  which will be considered. 

done in  Chapter IV.  

This will be 

For  the present  we shall ra ther  abstractly char -  
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acter ize  a structure and its associated s t ruc tura l  constraint by a set  S 

composed of all the feedback control laws which the structure is capable 

of generating. We shall use the symbol S to r e fe r  to both the structure 

itself and its set of control b w s .  Thus, the restr ic t ion that a control 

law U (XI be capable of being generated by a structure S can be expressed 

as U (x) E S .  

S -  

s -  

F o r  the SOP optimization problem formulated at the beginning of 

this section, the unconstrained optimal feedback control law U'(x) - is a 
.I- 

function only of the instantaneous state of the system. However, when a 

s t ruc tura l  constraint is imposed upon the optimization problem, the 

optimal solution subject to this constraint will in  general  depend on the 

initial condition x 

a "feedback' control. In o r d e r  to eliminate the dependence on the initial 

condition and convert the constrained optimal solution to the form U "'(x), 

it is necessary to modify the optimization problem somewhat. 

that is made is to minimize the cost  functional in  an  "average" sense.  

(A similiar idea has  been used in references 14, 43, and 44. ) If we view 

.Ir 

and must be denoted as U "'(x, x ). This is not really 
-0 s -  -0 

4. 

s -  

The change 

the init ial  state x as a random variable distributed over  a n  initial con- 

dition subset Q C X with a probability distribution Q (x), then the 

expectation <J> of the cost  is simply 

-0 

0 0- 

(2.2.4) 

This average cost  <J> is now independent of the init ial  condition x 

arid hence the control U -'.(x) which minimizes <J> must a lso be indepen- 

-0 
.L 

s -  

dent of x (I 

-0 
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We can now formally state the structurally constrained optimal 

control problem which will be considered in  this thesis .  

Definition 2.1 : Structurally Constrained Optimal Control Problem 

Given: 1) 

5) 

(SCOCP) 

A nonlinear, time -invariant, controllable, nth order ,  

dynamical system of the form 

j :  = f (x) + b U (x) ' d E E  x s -  - -- - 

for  which each state variable is directly measurable and 

where f E D@) with -- f (0) = 0. 

A target  set  which is the origin. 

An initial condition probability distribution Q (x) defined 

on an initial condition subset Q C X. 

A cost functional< J> of the form 

0 -  

0 

where 
a3 

0 

where g E is a convex, bounded, positive definite 

function with g(0) - = 0. 

A feedback s t ructure  with its constraint set  S of allowed 

feedback control laws Us(x) .  - 

Determine: The optimal structurally constrained feedback control law 

U"(x) E S which minimizes <J>. 
s -  
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The SCOCP which has  just  been defined will be solved in Chapter VI f o r  

the class of structural constraints defined in  Chapter N. Several  sub- 

optimal techniques f o r  its approximate solution will  be developed in  

Chapter V.  

We shal l  now formulate a stability problem which will be considered 

in conjunction with the SCOCP. 

First, it will provide a means of establishing asymptotic stability for  

control sys tems designed with suboptimal techniques. Second, it will 

provide a means of analyzing a given control system to determine its 

sensitivity and degree of stability. 

significance since there  is cer ta in  to be a deviation between the designed 

and implemented control law. Knowledge of how large a deviation is 

tolerable and its effect on system performance would be most useful. 

This same information would indicate the extent to which noise, sensor  

e r r o r s ,  and other disturbances could be expected to  affect system per -  

formance. 

There are two motivations fo r  this. 

This is of considerable engineering 

Before proceeding to formulate the stability problem, we need to 

By stability we precisely define "stability" and "implementation set". 

shall mean "asymptotic stability over a set L? I '  as used by LaSalle 46 
e 

Definition 2 .2 :  A dynamical system for which any t ra jectory - x(t) 

originating in a closed bounded se t  G! C X containing the origin remains 

in Q for  all t and approaches the origin as  t--oo possesses  asymptotic 

stability over  the set G!. 

Definition 2 .3 :  An implementation set I is a rectangular closed 

subset of the state space defined by 



-17- 
A 

I = {x: I. < x.  ; i =  1 9 . . . , n }  ( 2 . 2 .  5) 
1 -  1 -  - 

over  which a feedback control law is defined and implemented. 

The definition of I as a rectangular region was motivated by physical 

considerations. The allowed dynamical range of each state variable o r  

its sensor  is usually a finite interval  which is independent of the values 

of the other state variables;  therefore,  the region in  the state space over 

which a system can operate and its state be measure& is usually rectan- 

gular . 
To simplify notation, we make the following definition. 

Definition 2 . 4 :  The symbol & is defined as meaning "greater than 

o r  equal to" if llxll = 0 and "strictly grea te r  than" if IIxII - # 0. 

Now we can state the stability problem. 

Definition 2. 5: Stability Problem 

Given the SOP dynamical system 2 = f (x) f b U (x) defined on a 
s -  - --  - 

state space X and a n  initial condition set Q C X, determine a n  imple- 

mentation set  I C X  along with a set of upper and lower bounds, T.(x) 

and B(x), defined for  all x E I such that all controls U (x) satisfying s -  - - 

T(2) 43. > U , ( g  .& B(x) V Z E  I 

will generate asymptotically stable t ra jector ies  x(t) E I for  all initial 

conditions x E Q. 
-0 

In Chapter I11 we will es tabl ish that such stability bounds exist and 

can be computed with a relatively minimal amount of computation f rom 
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* 

a knowledge of only U (x). - 

solving this problem will be developed in Chapter VI1 and its applications 

discus sed 

An explicit computational algorithm for 

2.3 Analysis of Conventional Optimization Techniques 

As is well known, l3 the Maximum Principle states the following 

four Necessary Conditions for the SOP problem formulation defined in 

Section 2 . 2 .  

(2.3.1) 

( 2 . 3 . 2 )  

.f, 4, .Ir T 
NC3)  i< ' ( t )  = - [&), g(t), U(t)] = - ax a E  [ 2 ( t ) ]  - (&&)I) Jt) 

(2.3.3) 

NC4) H[ <'(t),;(t), u'(t)] = Min {H [x"(t),$(t), - u(t)]} (2 .3 .4)  
U 

The approach we shall  take in attempting to derive a set  of structurally 

constrained equivalents to the above se t  of Necessary Conditions will be 

to f i r s t  formulate a "Hamilton- Jacobi type ' I  par t ia l  differential equation 

in the state space and then specialize it to a single trajectory.  This 

partial  differential equation will not initially incorporate the Principle 

of Qptimality and hence will be valid for both optimal and suboptimal 

feedback control laws e 

of Qptimality will be investigated. 

Then the problem of incorporating the Principle 
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Although in general  the Hamilton- Jacobi formulation is not equiv- 

alent to the Maximum Principle because of its additional differentiability 

requirements,  the two formulations are equivalent for  the c l a s s  of prob- 

lems considered in  this thesis  where all allowed feedback control laws 

a r e  res t r ic ted to be not only continuous but infinitely differentiable. 

shall  consider the SOP dynamical system 

We 

- k(t) = - f [&)I t bU[x(t)] - vx - E x ( 2 . 3 .  5) 

being driven by an  a rb i t r a ry  feedback control law U(x) - E El'') for  which 

the resulting dynamical system is asymptotically stable (i. e . ,  - x(00) = 0). 

The cost  functional is 

00 
1 2  

J =  {g[x(t)l t 2 u [5<t)I Id t  vx E x 
0 

and the target  s e t  is the origin. 

For  the infinite t ime case under consideration, the cost  will depend 

only on the initial state x and, of course,  on U(2). Let J(x)  I denote the 

value of the cost  at each point in the state space which resul ts  f rom the 

control U(x). - 

numerical  value at each point 

defined by Equation (2.3.6) evaluated with x(t) being the solution of the 

differential equation defined by Equation (2.3. 5) f o r  which the point - x 

is the initial condition. 

-0 

By this we mean that J(x) - is a scalar function of - x whose 

is equal to the value of the cost  functional 

If J(x) - is a continuously differentiable function, 

(2 .3 .6)  

we may deduce that along any system trajectory x(t) 

(2.3.7)  
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But f rom the cost functional it follows that 

(2.3.8) 

Combining these two equations gives 

The above equation must  be valid at a l l  points in the state space since 

some system trajectory must go through each point E E X. 

differential equation is of the "Hamilton- Jacobi type" (without the Pr in-  

ciple of Optimality) and will be of fundamental importance in Chapter LTI. 

This partial  

If we now select  any point x E X as an initial condition, define 
-0 

x(t) to be the solution of Equation (2.3. 5) with x(0)  = x 

and u(t) a s  

and define p( t )  
-0' - - 

Equation (2.3 a 9) becomes 

{f[X(t)l + b (2.3.11) 

Noting that this has precisely the same form as N C l  , we define it to 

equal the constrained Hamiltonian H (x( t ) ,g( t ) ,  u( t ) )  and state the f i r s t  

structurally constrained necessary condition: 

s -  

SCNCl) H (x(t), p(t), u(t))  = g[x(t)] (f[g(t)I +b 
(2.3.12) 

s -  

We can immediately mimic NC2 and state 

In SCNC3 given below we encounter the first deviation in form between 

the constrained and unconstrained necessary conditions It can be 
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derived most  easily by differentiating Equation (2 .3 .9)  with respect to 

- x to obtain 

i SCNC3) 

(2.3.14) 

(2.3. 15)  
L 

Equation (2.3.14) has been previously derived for  the finite t ime case by 

Jacobson45 [Equation 3.43, page 591. This equation differs f rom that 

of NC3 in that a n  additional t e r m  

is added to the right hand side. Note that 

(2.3.16) 

in the special  case in  which 
.b 

U(x) - = U"'(x), - this  added t e r m  is identically zero  and SCNC3 and NC3 

are identical. As Jacobson points out, the significance of this equation 

is that it provides a practical  computational technique for propogating a 

suboptimal costate variable p(t) along a suboptimal t ra jectory generated 

by a suboptimal feedback control law. 

where a gradient technique is developed for  solving the constrained opti- 

mization problem. 

This will be required in Chapter VI  

The fourth necessary condition of the Maximum Principle is a 

differential statement of the Principle of Optimality. However, when 

s t ructural  constraints are imposed upon an optimization problem, the 
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Principle of Optimality cannot be formulated in a computationally feasible 

form. This type of constraint imposes a restr ic t ive relationship between 

the values which the control may assume at any point and those it may 

assume a t  every other point. As a resul t  if the control i s  specified at 

any point, this specification will r e s t r i c t  the values which it may assume 

a t  a l l  other points; if the control is changed a t  any point, corresponding 

changes must occur a t  all other points. 

optimal constrained cost  a t  any point x will depend not only on x (and, 

of course,  on the values of the control along the optimal t ra jectory f rom 

the point s to the target  set) ,  but also on the values which the control 

assumes a t  all points in the state space. 

of the optimal cost  a t  any point on the control a t  every point which pro- 

Therefore, the value of the 

It is precisely this dependence 

hibits the formulation of a meaningful statement of the Principle of Opti- 

mality for  structurally constrained problems. Thus, there  is no mean- 

ingful SCNC4, and we must reluctantly conclude that it i s  impossible to 

formulate a computationally feasible se t  of structurally constrained 

Neces s a r y  Conditions. 

The negation of any meaningful statement of the Principle of Opti- 

mality by the imposition of s t ruc tura l  constraints poses a ra ther  chal- 

lenging problem: How does one solve an optimization problem without 

using the Principle of Optimality? All of the major  techniques (Max- 

imum Principle, Hamilton- Jacobi Equation, and Dynamic Programming) 

a r e  based upon it. Furthermore,  the Principle of Optimality i s  so basic 

to these techniques and s t ructural  constraints seem to so thoroughly 

prohibit i ts  application in a computationally feasible manner that the 
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possibility of modifying these techniques sufficiently to overcome the 

difficulties seems remote.  Therefore  it becomes evident that alternative 

techniques must  be developed. 

While the preceeding analysis did not provide a method fo r  solving 

the structurally constrained optimization problem, it did reveal  the basic 

difficulties which a r i s e  f rom the imposition of s t ruc tura l  constraints.  

These difficulties indicate some of the changes which must be made i n  

formulating an effective solution to such problems. Specifically, 

The optimality cr i ter ion must  be global - not local. 

ventional principle of optimality is a local condition valid at 

The con- 

each and every point in the state space; a t  any given point it 

specifies a relationship between the values of cer ta in  func- 

tions a t  that point and is totally independent of their  value 

elsewhere in the state space. However, the imposition of a 

s t ruc tura l  constraint establishes a relationship between the 

values of the control a t  all points in the state space. This 

relationship prohibits the formulation of a statement of the 

Principle of Optimality in the conventional (local) sense e 

Hence, because of this global relationship on the values of 

the control, any meaningful optimality cr i ter ion must be 

global, not local. 

The optimization problem must be formulated and solved in 

the state space - not in the time domain. 

constraints a r e  expressed in t e r m s  of functions defined over 

The s t ruc tura l  

the state space and cannot be converted into the t ime domain 
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a s  constraints along a particular t ra jectory.  

the time domain would become even more  impossible for  the 

problem of multiple t ra jector ies  resulting from initial con- 

dition probability distributions. 

A conversion to 

In this section we have examined the difficulties which resul t  f rom 

the imposition of s t ruc tura l  constraints on the feedback control law. 

Due to the impossibility of formulating a meaningful statement of the 

Principle of Optimality, none of the conventional methods (Maximum 

Principle, Hamilton- Jacobi Equation, o r  Dynamic Programming) can 

be used to solve such problems. Therefore, alternative techniques 

must be developed. 

optimal - will be developed in the following chapters.  

equations developed in this section, particularly Equation (2 .3 .9 )  and 

Equation (2.3.15), will  be of great  importance to  these techniques. 

Several  such techniques - both optimal and sub- 

Several of the 



CHAPTER I11 

PROPERTIES O F  OPTIMAL AND SUBOPTIMAL SYSTEMS 

3. I Introduction 

The purpose of this chapter is to investigate the relationship between 

optimal and suboptimal SOP systems.  

in Section 3.2 and their  implications discussed. 

The major  resul ts  a r e  presented 

Sections 3.3 and 3 .4  investigate the relationship between the sub- 

optimality of a control law (i. e.  , the deviation between U (x) and U"'(x)) - s -  

and the corresponding suboptimality of its cost (i. e . ,  the deviationbetween 

Js(x) and J (x)). - 
derived and used to establish bounds on the suboptimal cost. 

:k 
A simple mathematical expression relating the two is 

These bounds 

show that the fractional increase in the suboptimal cost i s  l ess  than the 

square of the fractional deviation in the control. F o r  example, a sub- 

optimal control which is everywhere within 10% of the optimal will pro- 

duce a suboptimal cost which is everywhere l e s s  that 1.2 570 above the 

optimal cost .  This is a very important result ;  it may be viewed a s  a 

rigorous justification for  using suboptimal design techniques - particularly 

those based on mathematically fitting Us(%) to U"(x). - 
.L 

Sections 3. 5 through 3. 8 investigate the stability properties of 

optimal and suboptimal systems.  

stability bounds of the form 

In Section 3. 5 the existence of scalar  

i s  established. 

space a range over  which the sca la r  control U (x) can vary and still pro- 

These bounds specify a t  each and every point in the state 

s -  - 
-25- 
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duce a system which is asymptotically stable. Section 3 .6  discusses the 

various properties of these bounds. 

optimal SOP systems have cer ta in  stability properties in common. These 

a r e  examined in Section 3 . 8 ;  we demonstrate that in the special  case of 

Section 3.7 establishes that a l l  

l inear systems with quadratic cr i ter ia  these stability properties a r e  

equivalent to those which can be deduced f rom Kalman's "solution to the 

inverse problem of optimal control". 

3 .2  Statement of Major Results 

The major resul ts  of this chapter a r e  contained in three basic the- 

orems.  

Theorem 3.1 

Each will be stated and its implications discussed. The first, 

re la tes  suboptimal controls and suboptimal costs .  

>: 
Theorem 3.1 : Let U (x) - denote the optimal feedback control law 

and J*(x) - E D(') the corresponding optimal cost of a SOP with dynamics 

- k =f(z) tb u( t ) .  

system and Js(x)  - E D(') its corresponding cost. Then if Us(x) - satisfies 

the inequality 

Let Us(x) - denote a feedback control law for  the SOP 

o r  equivalently 

(3.2.2) 

at a l l  points - x along the suboptimal t ra jectory originating from any initial 

condition x then the suboptimal cost Js(zo) is bounded by 
-0) 

(3 .2 .3)  
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Corollary 3.1 : Given the same system, cost  functional, and sub- 

Let 52 C X be a bounded closed optimal control Us(x) - of Theorem 3 .1  * 

set  with the property that every solution of 

- X = _ _  f(x) t - bUs(x)  - vg E X (3.2.4) 

originating in  !2 remains  for  all future t ime in L?. 

inequality of Equation (3.2.1 ) 

If U (x) satisfies the 
s -  

Vx - E a, then the bound of Equation (3.2.3) 

holds Vx E 52. 
-0 

Theorem '3.1 and its associated corollary a r e  very significant 

resul ts ;  they may be viewed as a rigorous justification f o r  using sub- 

optimal controls and suboptimal design procedures.  

any control law U (x) which is mathematically close to U'(x) - will have 

a cost J (x) which is close to J"*(x); - fur thermore,  they give an  explicit 

bound on the suboptimal cost  which depends only on the bound on  the devi- 

ation between the optimal and suboptimal controls. F o r  example, if a 

suboptimal control is everywhere within 10% of the optimal, its cost must 

They establish that 
d. 

s -  
.l. 

s -  

be less  than 1.2570 above optimal. In addition, Equation (3.2.3)  directly 

displays the functional relationship between the magnitude of the control 

law deviation and the corresponding cost increment.  When deviations 

f rom optimality a r e  small (i. e .  , 

tion (3 2.3)  becomes 

.e. .a- 

Js(Zo) - J (x -0 

y nea r  0 such that 1 - 2~ x l ) ,  Equa- 

( 3 . 2 .  5) 

This s ta tes  that small deviations f rom optimality will only induce second 

o r d e r  increments in the cost  - the fractional increase in the suboptimal 

cost  i s  l e s s  than the square of the fractional deviation in the control, 
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Furthermore,  since the integrand of the 

nite and the t e rm 

Y 2  
1 - 2y 

1 
2 is  a finite positive constant 'v'r E [ o,--), 

cost functional is positive defi- 

(3.2.6) 

one can conclude that any sub- 

optimal control which satisfies (3.2.1) will produce a system which is 

asymptotically stable about the origin. 

Theorem 3.2 states a very simple but powerful result  for  estab- 

lishing the stability of suboptimal control laws. 

.L 

Theorem 3.2 :  Let U'(x) - be the optimal feedback control law and 

J"(x) - E D(') the optimal cost of any SOP with dynamics 

- 2 = - -  f(x) t - b u(t) 

.L 

for  which J*'(x) - -+a a s  115 11 -9 00. Then the system 

One of the most attractive features of Theorem 3 a 2 is the simplicity 

with which it can be stated (i. e . ,  "asymptotic stability if U (0)  = 0 and 

Us(z)  has everywhere the same polarity and at least  half the magnitude 

of U"(x)"). - 

which the scalar  value of a suboptimal control can vary and sti l l  produce 

s -  

.I, 

This theorem clearly demonstrates the wide range over 



-29-  

an asymptotically stable system. In particular,  it states that overdriving 

a system in the co r rec t  direction (is e. , having the same polarity but a 

much la rger  magnitude than U') will never endanger stability. 
.I. 

The major  importance of Theorem 3.2,  however, is - not fo r  estab- 

lishing the stability of a par t icular  system; stronger versions of this 

theorem (in which the bounds depend explicitely on g(x)) - will be developed 

in Section 3. 5 for  this application. Rather, the importance of Theorem 

3.2 is that since its bounds a re  a function of U".(x) - only, they a r e  valid 

for the entire c lass  of all optimal SOP systems. 

may be used to partially characterize the properties of optimal SOP sys- 

- tems.  

is a direct  application of Theorem 3 .2 .  

.L 

Hence, this theorem 

This application is best  illustrated by stating Theorem 3.3 which 

In preparation for stating Theorem 3.3, we make the following 

definition. 

Definition 3.1: Let S1 denote the SOP dynamical system defined 

by 

- k = -- f(x) t - b u( t )  

.b 

where U"'(x) - is the optimal feedback control law for  the above system 

for any SOP cost functional for which the optimal cost J".(x) - E D(')-+m 

as JJxII-oo. 

.t, 

Consider the system Sz formed from S a s  shown in Figure 3.1. 1 
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Figure 3.1 The System S2 

Note that if the nonlinear time-varying operator F(., t) is a l inear gain 

of unity, the system S 

system S 

is merely the implementation of the optimal 2 
We can now state Theorem 3 . 3 .  1' 

Theorem 3 . 3 :  Tne system S2 is asymptotically stable in the large 

if  

1) F(0, t )  = 0 V t  E [O, a) 

If the conditions of Theorem 3 . 3  were both necessary and sufficient, 

they could be used to characterize optimal SOP systems and thus solve o r  

at  least  state an equivalent cr i ter ion for the "inverse problem of optimal 

control". Unfortunately, although the conditions of the theorem a r e  nec- 

essary ,  they a r e  not sufficient. Nevertheless, the stability character-  

ization contained in Theorem 3.3 is quite strong; in Section 3. 8 we demon- 

s t ra te  that in the special  case of linear systems with quadratic c r i te r ia  

the stability resul ts  of Theorem 3 . 3  a r e  identical to those which can be 

deduced from Kalman's "solution to the inverse problem of optimal con- 

trol".  Thus, Theorem 3 .3  can only serve to partially characterize the 
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properties of optimal SOP systems;  nevertheless, since this is an  a rea  

in which very  little is known, the theorem is of some significance. 

3 .3  Equivalence of Two Optimization Problems 

The purpose of this section is to state, prove, and interpret  a 

theorem which establishes the equivalence of two optimization problems. 

The proof of Theorem 3.1 and the suboptimal design procedures devel- 

oped in Chapter V will be based on resul ts  derived f rom this theorem. 

Theorem 3 .4 :  Let U"(x) - denote the optimal feedback control law 
.b 

and J.'*(x) - E D(') the corresponding optimal cost of any SOP with dynamics 

- x = -I f(x) t - -  b U(x)  V X E X  - (3 .3.1)  

and cost  functional 

(3 .3 .2)  

0 

Let S denote a set of feedback control laws Us(x)  with corresponding 

costs J (x) E D(') for  which the dynamical system of Equation ( 3 .  3 .  1) is  

asymptotically stable. 

s -  

Consider the following two structurally constrained 

optimization problems. 

Problem 1 : Given the dynamical system of Equation (3.3.  l ) ,  the cost func- 

tional of Equation (3.3. 2), and a n  initial condition x E X. Determine the 

optimal control U i  (x) E S which minimizes J (x ). 

-0 
4. 

s -0 - 
1 

Problem 2:  

tional 

Given the dynamical sys tem of Equation (3,3.  l ) ,  the cost func- 
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2 
00 

J2 - -  - 2 1 [U"(x) - - US(z)] dt ( 3 . 3 . 3 )  

0 

E X. 
.L 

and the initial condition x 

which minimizes Jz(x  ). 

Determine the optimal control U"(X)E S 
"2- -0 

-0 

These two optimization problems a r e  equivalent in that the solution to the 
* .L 

first, Ui (x), is identical to the solution of the second, Us (E). For any 
1- 2 

control law U (x) I U (x) E S, the corresponding costs a r e  related by 
s2- s -  1 

.L 

J S ( z )  f J?'(X) - t J 2 ( x )  V x  - E X ( 3 . 3 . 4 )  

Proof: The proof proceeds as follows: First, a "Hamilton-Jacobi 

type" par t ia l  differential equation for  the cost  is formulated for  both the 

unconstrained optimization problem and Problem 1. These two equations 

are combined to generate a third equation - a par t ia l  differential equation 

which is identical to that for  the cost  of Problem 2.  By utilizing the spe- 

cific properties of these equations, we complete the proof. 

It was established in Chapter 11, Equation (2 .3 .  9 ) ,  that the optimal 

control and cost of the SOP optimization problem must  satisfy the par t ia l  

differential equation 

( 3 . 3 . 5 )  

with the boundary condition 

( 3 - 3 . 6 )  

whe r e  



-33- 

(3.3.7) 

Now we consider Problem 1. It was likewise established that the 

cost  J (x) corresponding to any feedback control law U (x) for  which 

the dynamical system of Equation (3.3.1) is asymptotically stable must 

satisfy the par t ia l  differential equation 

- s -  

with the boundary condition 

Js (0)  - = 0 (3.3. 9 )  

.Ir 4. 

The functions J-*(x), Js(x), U".(x), and U 

only the state - x and are defined for all - x e X. 

functions, U (x) and J (x), as 

(x) are sca la r  functions of 
9- - - - 

We now define two new 

0 -  0 -  

.t. 

us (2) = U"(X) - t U,'") ' d x e  - x (3.3.10) 
1 

.L Js(x) = J<''(x) t J (x) VZE x (3.3.11) 
0 -  - 

Inserting these expressions for  Us (x) and J,(x) into Equation (3.3. 8) 

and subtracting Equation (3.3. 5) gives 

1- 

(3.3.12) * 1 2  = - u (5) U0(") - ZUo(2 ,  'dx - E x 
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Using Equation (3.3.7) we observe that the second t e r m  in the above 

expression i s  equal to - U ( E )  U o ( ~ ) -  

ding t e r m  on the right hand side gives 

* 
Cancelling it with the correspon- 

( 3 . 3 . 1 3 )  

Using the definition given in Equation (3.3.10) we substitute 

us (5) = U"(x) - + UO(X) - (3.3.14) 
1 

into the left hand side of Equation (3.3.13) and 

u (x) = us ( E )  - $(E) 
1 

(3.3.15) 
0- 

into the right hand side to obtain 

(3.3. 16) 

It follows from Equations (3.3.6),  (3.3.9),  and (3.3.11) that the boundary 

condition for this partial  differential equation is 

J (0) = 0 (3.3.17) 
0- 

Since 
.I. 

Js(z) = J"(x) t J (x) VX - E x ( 3 . 3 .  18) 
0- - 

it follows that 

4. 

Min [Js(zo)] = Min [Jqx ) t J (x )] = Jl'Ix ) t Min 

1 1 1 
us E S  -0 0 -0 -0 us E S  us E S  

(3 .3 .19 )  
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.b 

Thus the control law U". (x) E S which minimizes J s ( x  ) must also be 
-0 sl- 

the one which minimizes J (x ). 
0 -0 

Now we consider Problem 2. Equation ( 2 . 3 . 9 )  of Chapter I1 estab- 

lishes that the par t ia l  differential equation for  the cost of the dynamical 

sys tem 

- X = -- f(x) + - b u s  (5) 
2 

and cost functional 

00 

J = I [ U:'(z) - U ,A ]'dt 2 2  S, - 

(3 .3 .20 )  

(3 .3 .21 )  
L 0 

is 

with the boundary condition 

J2(9 = 0 (3 .3 .23 )  

The above par t ia l  differential equation is identical to that of Equation 

( 3 . 3 . 1 6 )  with Jo(x) and Us (5) replaced by J2(z) and Us (x) respec-  

tively. Thus, i f  
2- 

- 
1 

then 

Therefore, since U (5) and U (x) are restr ic ted to belong to the same 
s1 s2 - 

constraint set S, the control law t J r  (x) - which minimizes J2(xo) must 
2 
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also be the one which minimizes J (x ). 

lished that this is UT ( E ) ,  we can conclude 
1 

Since we have previously estab- 
0-0 

-1, 

( 3 . 3 . 2 6 )  

Furthermore,  by inserting Equation ( 3 . 3 . 2 5 )  into Equation ( 3 . 3 . 1 1 )  we 

can conclude that for any control law Us (x) I U E S, the costs cor-  
1 -  

responding to the two problems a r e  related by 

.I. 

Js(5)  Jl'(5) + J2(z) & E  X ( 3 . 3 . 2 7 )  

In particular,  for  the optimal structurally constrained control laws 

U i  (x) E U i  (x) and the initial condition x 
a. .lr 

-0 - - 
1 2 

.Ir 1. 4. 1. 

J"(x ) E J (zo) t J2(lfo) 
S Q  

( 3 . 3 . 2 8 )  

Thus the theorem is. proven. 

Theorem 3 . 4  is a ra ther  intriguing resul t  with a number of inter-  

esting implications. Consider the problem of driving the dynamical 

system from some initial point x to the origin with a suboptimal con- 
-0 

J, 

t r o l  Us(&) E S. If the optimal control U'(x) - is known at  a l l  points along 
.Ir 1. .b -a- 

the optimal trajectory x (t), J (zo) can be d i rec t ly  evaluated; similarly,  

if U (x) i s  known along the suboptimal t ra jectory,  J (x ) may be directly 
s -  S Q  

evaluated. Then J (x ) ,  the increase in cost due to suboptimality, can 

be evaluated by 

2 -0 

.I. I. 

JZ(r$)  = Js(so) - J (5,) v-t$ E x ( 3 . 3 , 2 9 )  

However, Theorem 3 . 4  states that to evaluate J (x ) you do not need to 2 -0 
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.I. 

know U"(x) - along the optimal t ra jectory - in fact, you do not even need 

to know the optimal trajectory! U'(x) and U (x) need only be 

known along the suboptimal trajectory.  

f rom 

.Ir 

Instead, 
s -  - -  

Then J2(x  ) may be evaluated 
-0 

0 

where - x(t) is the solution of 

(3.3.30) 

(3.3.31) 

with x(0) = x 

trajectory.  

; the - x(t) used in Equation (3.3.30) is the suboptimal 
-0 - 

.L 

Note that if U"(x) - U s ( x ) ,  Jz(xo) = 0 as it must. 

3 .4  Proof of Theorem 3 . 1  

The proof of Theorem 3 .1  is presented in this section. Before 

proceeding to  construct the proof, we must  f i r s t  introduce a definition 

and prove a lemma. 

As  in Section 3 .3  let  

.l. 

~' ' ' (x)  - = Optimal Cost 

J (x) = Suboptimal Cost 

J2(x)  = J (x) - J"'(x) - 

s -  
.L 

S -  - 

We shall  usually r e f e r  to  J (x) a s  the excess suboptimal cost. 2 -  

nition 

By defi- 

(3.4.1) 

0 
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.I. 

and Theorem 3.4 establishes that if Js&) E D(2) and J*'(x) - E D(2) then 

(3.4.2) 
0 

where the - x(t)  used to evaluate both of the above integrals is that of the 

suboptimal t ra jectory generated by Us(x). - Since 

.L -I' 

J (XI = Js(z) - J2(g v x  - E x (3.4.3) 

it follows that 

(3.4.4) 
0 

where the above integral  is  likewise evaluated along the suboptimal t r a -  

jectory.  

We shall use the previous equations to define a ra ther  interesting 

and useful scalar  expression which provides a measure of the efficiency 

of the suboptimal control law at each point in the state space. 

Definition 3.2: Let E[x, - Us(x)] - denote the ratio of that portion of 

the suboptimal cost going into excess suboptimality, 6J 

into optimality, 6 J-p, at  each point in the state space. 

expression for  E[x, U (x)] 

to that going 2' 

The analytic 
rl- 

S -  - 

(3.4.5) 

is  merely the ratio of the integrands of Equations ( 3 . 4 . 2 )  and (3 .4 .4) .  



-39- 

Note that E [x, U (x)l will be zero  a t  all points x where U (x) = U"(x). - 

The sca la r  value of E[x, - Vs(x)]  - increases  monotonically with the devia- 

tion between the sca la r  values of U (x) and U".(x) - over  the range of 

values of U (x) for  which the denominator remains positive. 

dition that the denominator be positive can be restated as 

s -  - s -  - 

4. 

s -  

The con- s -  

(3.4.6) 

In Section 3. 5 we will establish that all feedback control laws U (x) 

which satisfy this inequality will produce asymptotically stable systems e 

The properties of such controls and their  relation to U'r(x) - will be exam- 

ined in Sections 3.6 through 3.8. 

inequality is a very weak restriction and that virtually a.ny Us(x) - which 

may be said to approximate U"(x) - will satisfy it. Since the numerator 

of E[x, U (x)3 is positive semi-definite, the condition 

s -  

.I. 

There we shall  demonstrate that the 

.b 

s -  - 

is equivalent to Equation (3.4.6). 

Equation (3.4.7) will produce an asymptotically stable system. 

Hence any control Us(x) - satisfying 

Now we state and prove Lemma 3.1. 

.I. 

Lemma 3 - 1: Let U*'(x) - denote the optimal feedback control law 

and J"'(x) E D(') the corresponding optimal cost of a SOP.  Let U (x) 

denote a feedback control law for the SOP system and Js(x) - E D(2' its 

corresponding cost. 

.I. 

s -  - 

If Us(z)  is such that for  some positive E 

(3.4.8) 

at all points - x along the suboptimal t ra jectory originating from any initial 

condition x then the suboptimal cost Js(xo) i s  bounded by 
-0 , 
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Proof: Since E[x, Us(z)] 2 0, the denominator of E[x, Us(x)] must  
c - - 

be positive. Therefore, 

(3.4.10) 

at a l l  points - x along the suboptimal trajectory.  Since 

00 
J2 - - - 2 1 J [U * (5) - US(Z)l 2 dt 

0 

it follows that 

(3.4.11) 

(3.4.13) 

(3.4.14) 

and the lemma is proven. 

Now we a r e  able to prove Theorem 3.1. 

Proof of Theorem 3.1: If the suboptimal control U (x) satisfies s -  

the inequality 

o r  equivalently 
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(3.4.16) 

a t  all points - x along the suboptimal trajectory,  it directly follows that 

the inequalities 

and 

(3.4.17) 

(3.4.18) 

o r  

(3.4.19) - -[U"x) 1 -Ir - Us(Z)l 2 2 - 2 1 2  y [ d<(E)]  2 2 

a r e  valid for  all points x along the suboptimal t ra jectory.  

tions (3.4.17) and (3.4. 19) gives 

Adding Equa- - 

(3.4.20) 
1 2  1 -'- -u  2 s -  (x)-~[u ' r (x)-us(x)I  - 2 

Since g(x) is positive definite, it follows that - 

By using the inequalities in Equations (3.4.18) and (3.4.21), one can 

directly establish that 

for a l l  points x along the suboptimal t ra jectory.  

as 

Then, identifying E - 

2 
E = -  Y 

1 -2y (3.4.23) 
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and using Lemma 3.1, it follows that 

and hence Theorem 3 .1  is proven. 

Theorem 3.1 and the definition of 0. 

Corollary 3 . 1  follows directly f rom 

3.5 Derivation of Stability Bounds 

In this section we shall establish the existence of a pair  of sca la r  

stability bounds, T(x) - and B(x), for  dynamical systems of the SOP type 

and prove the following two theorems. 

.I- 

Theorem 3 .  5: Let U"(x) - be the optimal feedback control law and 
-9. 

J".(x) - E D(2) the associated optimal cost of a SOP with dynamics 

- k = -- f(x) t - bu( t ) .  

L? = {x: - J".(x) - -  < y 1,. and let T(x) - and B(x) - be the set  of stability bounds 

corresponding to U'r(x). -- Then if 

Let i2 C X be a closed bounded set  defined by 
.I, 

J. 

V X E a  > 
T(S) &Js(E) @(24 

the system - k = _- f(x) t - b U,(z) is asymptotically stable over the set 52. 

Theorem 3.6:  Let U"(x) - be the optimal feedback control law and 
.L 

JSr(x) - E D(2) the associated optimal cost of a SOP with dynamics 

- f = -- f(x) t - bu( t ) .  

that every solution of 2 = f(x) t b U (x)  originating in i-2 remains f o r  a l l  

future t ime in Q a  Let T(x) - and B(x) - be the set of stability bounds cor- 

responding to U"(x). - 

A 
Let S'2 c X be a closed bounded set  with the property 

A 

s -  - -- - 
A 

Then i f  



A 
= f(x) + b U (x) is  asymptotically stable over the se t  s2. the system s -  - -- - 

These theorems will be used in Chapter VI1 to solve the stability problem 

formulated in Chapter 11. 

The proof of these two theorems is based on a Lyapunov argument 

46 and utilizes the following two theorems.due to LaSalle . 

Theorem 3 .7 :  Consider the dynamical system - A = -- F(x). Let 

S2 C X be a bounded closed set  defined by V(x)  - -  < y ,  where V(x)  - is a 

scalar  function with continuous f i r s t  par t ia l  derivatives fo r  all - x E a 
having the property that V(2)  > 0 and V(2)  < 0 for  all - x E a except the 

origin where V ( 0 )  = 0 and ? ( O )  - = 0 .  Then the system i s  asymptotically - 

stable over  the se t  52. 

A 
Theorem 3.8: Let s2 C X be a bounded closed set  with the property 

A 
that every solution of - k = -- F(x) start ing in 3 remains for all future t ime 

in s2. 

derivatives f o r  a l l  E E S2 with the property that V(x )  - > 0 and c(x) - < 0 for  

all - x E Q except the origin where V(0)  - = 0 and q ( 0 )  - = 0. 

is  asymptotically stable over the se t  52. 

A 
Suppose there is a sca la r  function V(5)  with continuous first par t ia l  

A 

A 
Then the system 

A 

We now proceed to develop an analytical expression for T(x) - and 
-1- 

B(5). 

This choice guarantees that V(x) - > 0 at a l l  points - x except the origin 

where V(0)  - = 0 .  

The optimal cost J"'(x) - will be used as the Lyapunov function V(x). - 

Theorems 3 , 7  and 3. 8 both state that the dynamical s y s -  

tern 
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- .j, = e- f(x) 4- bUS(X) ( 3 . 5 . 1 )  

will be asymptotically stable over  the specified domain if G(x) - < 0 a t  

a l l  paints 2 except the origin where V(0) = 0. 

For  the Lyapunov function V(z)  = J (x), - the expression for  Vk) * 
becomes 

( 3 . 5 . 2 )  

Since in general  

is not zero at x = 0, in order  to insure that V(0) - = 0 we must require - -  

and since 

this condition becomes 

( 3 . 5 . 3 )  

( 3 . 5 . 4 )  

(3 .  5. 5) 

(3 e 5 . 6 )  

( 3 . 5 . 7 )  

( 3 .  5. 8) 

o r  
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(3.5.9) 

F o r  the unconstrained optimization problem 

(3.5.10) 

and from 

we find 

Inserting this into Equation (3. 5. 9)  gives 

(3.5.11) 

(3.5.12) 

(3 5.13) 

o r  

u s -  (x) U:)(z) > <f(x), -- - P;:@ 

Observe that the direction of the inequality sign depends on whether 

U"(x) - is positive o r  negative as shown by expressing Equation (3. 5.14) 

a s  

(3. 5. 14) 

.e. 

F o r  {x: - U"'(x) - > 0) 

F o r  {x: - U":(x) - < 0} 

( 3 .  5. 15) 

(3. 5. 16) 

This provides bounds on U (x) except for the ambiguity occurring 

Equa- 

s -  

when U"(,) = 0, 112 11 # 0. 

tion (3. 5. 14) g'  Ive s 

Recall that when (Ix 11 = 0, U (0)  = 0. 
s -  - 
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(3. 5.17) 
& 

From Equation (3 .  5.10) we find that for  U'(x) - = 0 

4&,,P*i$ = - g&) 

and hence the above condition becomes 

(3.5.18) 

0 ' - g ( 2 )  (3.5.19) 

0, the above condition is satisfied; and and since g(x) - > 0 for IIx - 11 
being independent of Us(x), - it is satisfied for any and a l l  values of 

Us(x). Hence we conclude 

The bounds which have just  been established explicitly require the 

numerical  value of the costate variable 

(3.5.21) 

for a l l  - x E X. 

bounds will be expressed in a format requiring only knowledge of U"1x). - 

Inserting Equation (3. 5.12) into Equation (3. 5.10) gives 

Since this might be difficult to compute and s tore ,  the 
.I> 

f rom which we deduce 

(3.5.22) 

( 3 .  5 . 2 3 )  
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Using this substitution to eliminate the undesirable t e rms ,  the bounds 

become 

For  {x: - U"(x) - > 0) 

For  {x: - U:'(x) - < 0 )  

For  {x: - U"(x) - = 0} 

u (x) < -L 2 1  U*(X) - 
s -- 

u (x) = 0 
s -  

- 00 < Us($ < +00 { 
(3. 5. 24) 

F r o m  the structure of the above inequality constraints it is c lear  

that one can define two bounding functions - an  upper bound T(x) - and a 

lower Sound B(x) - - such that the above conditions a r e  equivalent to 

These functions T(x) - and B(x) - are defined by Equations ( 3 .  5.26) and 

(3. 5.27). 

T(x) - Upper Bound 

F o r  (x: - U"(x) - > 0) T(2) = t 00 

I 

For  {x: - U:"(x) - < 0} 

For  {x: - U'k(x) - = 0 }  
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B(x) - Lower Bound 

For  {x: - U*(x) - 1. 0 )  

For  {x: - U"(x) - < 0 )  . 

.b 

For  {x: - U'(X) - = 0) 

(3.5.27) 

* 
Proof of Theorems 3 .5  and 3.6: Since the choice V(x)  - = J (5) 

guarantees that V(x)  - > 0 at  all points - x except the origin where V(0) - = 0 

and since satisfaction of the stability bounds 

> > 
T(x) &Js(x) 

guarantees that over the specified domain V(x) L < 0 at a l l  points - x except 

the origin where V(0)  L = 0, any system satisfying the conditions of Theo- 

r ems  3. 5 and 3 .6  must satisfy the requirements of Theorems 3.7 and 

3 .8  and thus be asymptotically stable. Therefore, Theorems 3. 5 and 3.6 

a r e  proven. 

An example is presented in Section 7.3 which i l lustrates the appli- 

cation of these theorems to establish the stability of a typical control 

sys tern. 

3 .6  Propert ies  of the Stability Bounds 

There are several  important observations which can be made about 

these stability bounds. 
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Both T(x) - and B(x) - can be evaluated with a sma l l  amount of 

computation requiring only the numerical  value of the optimal 

control ~ “ ( x ) .  - 

The bounds do not even require U (x) and U’’(x) - to have the 

same polarity at a l l  points in the state space. (See the exam- 

ple in  Section 7 .  3 ) .  

.b 

.L 

s -  

d. 

If U“(x) - is continuous (as it almost certainly will be with the 

smoothness conditions of the SOP), then except for  the origin, 

T(x) - is continuous fo r  a l l  {x: - T(x) - < oo} and B(x) - is contin- 

uous for  all {x: - B(x) - > -00). 

F o r  each point 5 E X except the origin, the bounds a r e  a t  

most one-sided: either T(x) - = t o o  o r  B(x) - = - oo o r  both 

T(2) = t a o  and B(x) - = -00. 

and U (x) can be as positive a s  desired;  for  {x: - U*(2) < 0}, 

B(2) = - oo and U (x) can be a s  negative a s  desired: for 

{x: U ” ( x )  = 0}, 

have any finite value without endangering stability. 

one can conclude that overdriving the system in the cor rec t  

direction (i. e . ,  having the co r rec t  polarity for  the control) 

will never endanger stability; in fact, it would tend to enhance 

stability by moving the value of the control numerically fu r -  

ther  f rom the point of instability. 

.I. 

For  {x: - U‘(x) - > 0}, T(x) - = too 

s -  

s -  
.b 

T(5) = t o o  and B(x) = - oo and U (x) can 
s -  - - c 

Hence 

The phenomena of one-sided stability bounds is due exclusively to the 

control being linearly added to the system, The fact  that both bounds 
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.I, 

a r e  infinite when U"*(x) - = 0 resul ts  directly f rom the vector - b being 

d -Ir 
.b a J=clr) whenever Uv(x) = 0; hence, - [,J-(z)f = - g(2) dt  normal  to the vector - -E-- 

and is independent of the value of the control. 

3.7 Proof of Theorems 3 . 2  and 3 . 3  

In this section we shall  prove Theorems 3 . 2  and 3 . 3 .  The proofs 

utilize the stability bounds developed in Section 3 . 5  and a r e  based on the 

following theorem due to LaSalle. 46 

Theorem 3. 9: Consider the dynamical system - j ,  = -- F ( x ) .  Let V ( x )  - 

be a sca la r  function with continuous f i r s t  par t ia l  derivatives for  a l l  - x. 

Then i f  

i) V(2)  > 0 vx - # - 0 

ii) Tj(x) < o vx # _I! 

+(O) 0 

the dynamical system is  ASIL (asymptotically stable in the large) .  

F o r  convenience, both theorems will be restated; then their  proofs 

given. 

.I, 

Theorem 3.2:  Let U'(x) - be the optimal feedback control law and 
.L 

J"'(x) - E D(') the optimal cost of any SOP with dynamics 

- k = _ -  f(x) t - b u( t )  

.T, 

f o r  which J"'(x) - -oo a s  I/x 11 -+m. Then the system 
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k = f(2) t b U (x) 
s -  - - 

is asymptotically stable in the large if 

i) U (0) 0 
s -  

i i)  

iii) 

Sgn [ U  (x)] = Sgn [u"(E)~  

I u s ( 2 )  I 2 -L uZk(k) I 2 1  - 

V{x:  - U*($ # o) 

V{x: - U"(X) # o}  

s -  

J, 

Proof of Theorem 3.2: Let V ( x )  - E J1'(x). - Then conditions i) and 

iii) of Theorem 3.9 a r e  satisfied. Since f (0)  = 0, requiring U (0)  = 0 

insures that - k(:(o) = 0;  hence, V(0 )  - = 0. 

Equation (3. 5.24), it follows that v(x) < 0 for  a l l  {x: - -  IIx 11 # 0} if  

s -  -- 

From the resul ts  of Section 3 .  5, 

(3 .7 .1)  

(3 .7 .2)  

. Hence, the conditions g k )  Since g ( 2 )  i s  positive definite, so  is .b 

I U'"(x) I 

a r e  more  restrictive than those of Equations (3.7. 1) and (3.7.2) ;  any 

Us(&) satisfying the la t ter  set  will guarantee that V(x) - < 0 for all 

{x: - IIx - 11 # O}. Equations (3.7.3) and (3.7 e 4)  a r e  precisely equivalent 

to conditions ii) and iii) of Theorem 3.2. 

Theorem 3 . 2  guarantee that condition i i )  of Theorem 3. 9 is satisfied f o r  

Thus, the three conditions of 
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.b 4. 

V(E) f J-r(x),  - and the choice V(x)  - E Jer(x)  - itself guarantees that conditions 

i) and iii) of Theorem 3 . 9  are satisfied. Therefore,  the dynamical 

system must  be ASIL; hence, Theorem 3.2 is proven. 

The system S2 was defined as being constructed f rom the optimal 

SOP system SI a s  shown in Figure 3.2 

Figure 3.2 The System S2 

and Theorem 3 e 3 states 

Theorem 3.3: The system S2 i s  asymptotically stable in  the large 

if 

1) F[O,t] = 0 Vt E [ O ,  00) 

Proof of Theorem 3 . 3 :  The proof of Theorem 3 . 3  follows directly 

f rom Theorem 3.2 and the definition of the system S The feedback 2 "  

arrangement specifies that 

.I. 

Us (2) = - F [ - UC'(ff), t] (3 .7 .5)  

.b 

F o r  {x: - U'(x) - = 0}: F [ O ,  t] = 0 ; hence Us(") = 0 



- 5 3 -  

1 4- 
.b -1- 1 :: 

For  {x: U".(x) > 0}: F[- U"(x), t ]  5 - z U  (5); hence, U (x) 2 zU* ' ' ( s )  s -  - 

4. 1 -'- 1 :: 
F o r  {x: U"(x) < 0}: F[- U".(5), t ]  ~ U " ' ( X ) ;  hence, U (x) < - U  (x) s - - 2  - - - 

.L 

Since U*"(O) - = 0 ,  the system S2 subject to the restrictions of Theorem 

3 . 3  satisfies all three conditions of Theorem 3 . 2 .  Hence, the system 

S2 is ASIL and the theorem is proven. 

The two main theorems of this section, Theorems 3 . 2  and 3 . 3 ,  

may be viewed f rom two perspectives. 

a s  stability cr i ter ia  which, although somewhat weaker than the c r i te r ia  

of Theorems 3 .  5 and 3 . 6 ,  are nevertheless much s impler  and eas ie r  

to use.  

which the suboptimal control may 'Jary and still produce a stable system. 

They establish the stability of a large c lass  of suboptimal systems - 

particulary systems in which the suboptimal control is designed to approx- 

imate the optimal control. 

F i r s t ,  they may be reguarded 

Theorems 3 . 2  and 3 . 3  clear ly  demonstrate the wide range over  

F r o m  the second perspective, Theorems 3 . 2  and 3 . 3  may be viewed 

as stating a very important property of optimal SOP systems. 

these theorems apply to all optimal SOP systems but do not explicitly 

depend on either the system dynamics o r  cost functional, they a r e  stated 

in a form which can be used to partially characterize the class  of optimal 

SOP systems.  

tion 

Since 

This application will be considered in the following sec-  
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3.8 Characterization of Optimal SOP Systems 

In this section we seek to determine the extent to  which Theorem 

3.3 can be used to characterize optimal SOP systems 

would like to establish that this theorem forms a necessary and suffi- 

cient condition for characterizing optimal SOP systems and thus solves 

o r  at least  states an equi,valent cr i ter ion for  the "inverse problem of 

optimal control. I' Unfortunately, although the conditions of the theorem 

a r e  necessary? they a r e  not sufficient. Nevertheless, the stability 

characterization contained in Theorem 3 . 3  is quite strong; we shall  

demonstrate that in the special  case of l inear systems with quadratic 

c r i te r ia  these stability properties a r e  equivalent to those which can be 

deduced from Kalman's "solution to the inverse problem of optimal con- 

trol".  

Ideally, we 

Fi rs t ,  we shall  demonstrate that Theorems 3.2 and 3 .3  a r e  the 

strongest possible statements (of their  type) which can be made; thus, 

they a r e  the best  necessary conditions for  characterizing optimal SOP 

systems which can be obtained f rom the theory which has been developed. 

Conditions i) and ii) of Theorem 3 .2  are clearly necessary and can't be 

changed; however, one might think that condition iii) could be strengthened 

by changing it to 

1 
2 where y is some positive constant? 0 < y < - . The following counter- 

example will demonstrate that this is impossible and that the value of 

1 - used in Theorems 3.2 and 3.3 is the least  possible. 2 

sca la r  system 

Consider the 
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k,(t) = x(t)  t u(t) 

and cost functional 

00 

J = -!. [ax2 t u  2 (t)] dt ; a > 0 2 
0 

for which the optimal feedback control is  

U::(g = - [ l  tJG] x 

( 3 . 8 .  1)  

( 3 . 8 . 2 )  

:: 
For very small  values of a, U (x) - may be approximated a s  

( 3 . 8 . 3 )  1 4. 

U".(x) - [ 2  t p ]  x 

Now if we let 

( 3 . 8 . 4 )  1 
2 

-1. 1. 

US(E) = y u ( E )  = - y [2  t - a ]x  

the system dy-namics become 

k = [ l  - 2 7  +]X (3 .  8.  5 )  

from which it i s  c lear  that the system will  only be stable if 

7 1 - 2 7  - - a  2 < 0 ( 3 .  8 . 6 )  

In the limit of a approaching zero,  this wil l  require 

( 3 . 8 . 7 )  1 
y 1 2  

and, hence, condition (iii) cannot be improved. Thus, Theorems 3 . 2  

and 3 a 3 cannot be improved. 

Now that we have established that Theorem 3 . 3  is the strongest 

statement which can be made about the stability properties of optimal 
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SOP systems with the theory which has been developed, it is natural  to 

ask: "How good is i t?  Does this theorem provide a complete character-  

ization (i. e .  , both a necessary and sufficient condition) for  optimal SOP 

systems, o r  is it only a necessary condition which provides a par t ia l  

characterization of their  properties? ' I  Unfortunately, there a r e  no 

resul ts  known to the author which specify the properties of optimal non- 

linear systems of the SOP type; hence, a direct  answer to these questions 

is not possible. However, Kalman has  completely characterized the 40 

class  of optimal l inear t ime -invariant systems with quadratic c r i te r ia .  

Therefore, we shall res t r ic t  our attention to this special  case and com- 

pare the resul ts  of Theorem 3 .3  with Kalman's "solution to the inverse 

problem of optimal control" and the stability properties which can be 

deduced from it. 

We shall consider controllable, l inear,  t ime -invariant systems 

j, = A x  t bu( t )  - _- - 

with the cost functional 

03 

( 3 .  8.  8 )  

( 3 .  8. 9 )  
0 

where Q is a positive definite matrix.  It is well known13 that for this 

problem an optimal feedback control U'(x) - = - (k") - -  x exists,  is unique, 

and satisfies the two conditions required by Theorem 3 .3  - U*"(O) - = 0 

and J"'(X)+OO - as IIx - 11-00. 

4. T 

.b 

4, 

Hence the resul ts  of Theorem 3.3 apply to 

every optimal l inear system. 

Let us consider the same system driven by any stable, observable 

feedback control law 
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T 
U(X) - = - (k) fi (3.8.10) 

and define an  output 

T y = - U(X) - = t(k) - -  x (3.8.11) 

and define the t ransfer  

S(jw) = 

function between the input and output as S(jo) 

(3.8. 12) 

40 Then Kalman s ta tes  the following theorem. 

Theorem 3. 10: Given a l inear,  time-invariant, controllable plant 

T with a stable, completely observable control law U(fi) = - (&) - x. Then 

U(x) - = - (k) - x is an  optimal control law corresponding to a cost  func- 
T 

tional of the type defined in Equation (3.8. 9) if and only if 

The above theorem is the classical  "solution to the inverse problem of 

optimal control for l inear  systems.  I '  

Theorem 3.10 s ta tes  that there  is a portion of the complex plane 

into which the Nyquist plot of the t ransfer  function S( jw)  of any optimal 

l inear system may neither enter  nor encircle.  

c i rc le  of unit radius centered at  -1, is shown in Figure 3.3.  The 

restr ic t ion that the control law must  be stable guarantees that S( jw)  

can't encircle  this region, and Equation (3. 8.13) explicitly states that 

S(jw) can't  en te r  it. In addition, Theorem 3. 1 0  states that every t rans-  

f e r  function whose Nyquist plot neither encircles  nor enters  this region 

must be the t ransfer  function of some optimal l inear  system. 

This excluded region, a 

Thus, this 
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simple frequency domain cr i ter ion provides an explicit necessary and 

sufficient condition for  characterizing optimal l inear systems e 

Excluded Region I 

Figure 3.3 Excluded Nyquist Region 

The stability properties of optimal l inear systems can be deter-  

mined from Theorem 3.10. 

neither enters  nor encircles  the excluded region. 

must be the input-output t ransfer  function of some optimal l inear system 

and, hence, for some optimal SOP system S1 (as defined in Definition 

3.1) .  

the nonlinear time -varying operator F(* , t )  as indicated in Figure 3 .2 ,  

the Circle Theorem of I. W. Sandberg 50 s ta tes  that S2 is ASIL if 

Consider any t ransfer  function S(jo) which 

This function S( jw)  

If the system S2 is constructed f rom this system S by adding 1 

F[O,t] = 0 

m, - 1 
0- - 2  

V t  E [ O ,  00) 

Y t E  [ O , O o ) ,  c r f  0 

(3.8.14) 

This is precisely the same resul t  as stated by Theorem 3.3. Although 

Theorem 3 .3  s ta tes  nothing new about optimal l inear systems, it does 

provide the strongest possible stability characterization which can be 
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made. Hence, one might reasonably expect that the stability character-  

ization for  optimal nonlinear systems is also quite good. 

The above resul ts  also demonstrate that Theorem 3 . 3  is not a 

sufficient condition for  either the l inear o r  general  case.  As  is well 

known 50, the Circle Theorem is only a sufficient condition for  stability- 

not a necessary and sufficient condition. 

exist which satisfy the conditions of Equation (3. 8.14). 

Non-optima1 linear systems 

Therefore, we must conclude that Theorem 3 . 3  can only serve to 

partially characterize the propert ies  of optimal SOP systems. Never- 

theles s, the stability characterization is quite good. 

is known about the properties of optimal nonlinear systems, this theorem 

is  of some significance. 

Since very  little 



CHAPTER IV 

THE FEEDBACK IMPLEMENTATION STRUCTURES 

4.1 Introduction 

We have thus far considered s t ruc tura l  constraints of a completely 

general  nature. 

the se t  of feedback s t ruc tures  which will be used and its associated con- 

s t ra int  set S must  be specified. 

F o r  the SCOCP problem formulation to be meaningful, 

This will be done in this chapter.  

In Section 4 . 2  we define and character ize  the S(M, N, K )  class of 

feedback s t ructures  which will  fo rm the constraint set of allowed imple- 

mentations. These s t ructures  - interconnections of single-input- single- 

output (SISO) function generators and ideal summers  - a r e  simple and 

pract ical  to implement, yet a r e  capable of representing a wide c lass  of 

control laws. 

In Section 4.3 we outline and discuss  the general  approach that will 

be taken in solving the SCOCP problem formulation for  the S(M, N, K )  

c lass  of s t ruc tura l  constraints.  

In Section 4.4 we develop a modified vers ion of the conventional 

gradient projection technique which allows the s t ruc tura l  constraints of 

the S(M, N, K )  s t ructures  to be incorporated directly into the optimization 

problem. This technique will be required by the design procedures devel- 

oped in Chapters V and VI. 

4 .2  The S(M, N, K )  Structures  

We shall  now define the c l a s s  o r  set of feedback s t ruc tures  which 

will f o r m  the constraint  se t  of allowable implementations. The struc- 

-60-  
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tu res  in this se t  should be an  appropriate compromise between s t ructural  

simplicity and theoretical  completeness - the ability to  represent a l l  opti- 

ma l  feedback control laws. Our choice of the particular se t  of s t ructures  

which will be considered in this thesis was motivated by the recent math- 

ematical  results of Kolmogorov, 25-26 Lorentz, 3 7 - 3 9  and Sprecher.  28 -32  

They have established that any continuous function of n variables , 

f(xl, . . . xn), can be represented as a superposition of functions of one 

variable as follows : 

(4.2.1) 

where the functions G ( - )  and the J I . ( * )  a r e  continuous. This ra ther  
1 

remarkable result  indicates that any continuous optimal feedback con- 

t ro l  law can be constructed by an  appropriate interconnection of ideal 

summers  and single-input- single-output (SISO) function generators.  

Since SISO function generators are  easy  and practical  to construct, one 

would initially expect that this synthesis procedure would provide the 

solution to the implementation problem. Unfortunately, however, the 

synthesis functions required by the above representation technique a r e  

extremely "wiggly" (in fact, nowhere differentiable). The question of 

the applicability of the above representation scheme to the synthesis of 

optimal and suboptimal feedback control laws has  been examined in 

detail by the author et alp7 and the conclusion is that due to the poor 

analytic properties,  this implementation procedure is useless  as for- 

mulated e However, in the Ko lmogorov- Lorentz -Spre che r formulation 

the functions + .( - ) were restricted to be topological transformations 
1 
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(i. e . ,  the same se t  of functions $i(. ) is used f o r  all f(x)) and only the 

function G ( . )  was allowed to depend on f(x). - It is this restr ic t ion which 

is pr imari ly  responsible fo r  the poor analytic properties of the synthesis 

functions. If the rest r ic t ion that the $ . ( - )  fo rm a topological mapping is 

relaxed and these functions a r e  allowed to depend on the particular func- 

1 

tion f(x) - which is to be represented, a substantial amount of additional 

flexibility will result  and the new synthesis functions should be much 

smoother and hence much eas i e r  to approximate and implement. One 

can quickly verify that a large c lass  of functions can be represented in 

this manner with smooth functions. In particular,  sums, products, and 

exponentiations can be so  generated. Thus it is felt that since a partic- 

ularly simple SISO structure  is capable of representing a l l  continuous 

multivariable functions under the ra ther  severe requirement that the 

,pi( ) be a pr ior i  prespecified topological mappings, more general  SISO 

structures  utilizing only smooth synthesis functions all of which can 

depend on f(x) - should be able to represent  o r  accurately approximate a 

wide c lass  of optimal feedback control laws. Hence, based upon the 

above considerations, general  SISO structures  w-ith smooth synthesis 

functions will be selected as the members  of our  constraint s e t  of allow- 

able implementations * 

Since SISO structures  a r e  to be used to implement the feedback con- 

t r o l  laws, one should at the outset define and classify al l  of the possible 

SISO s t ruc tura l  forms  e 

if one could order  them into a sequence of monotonically increasing 

In addition, it would be particularly appealing 

complexity, for this would provide a direct  and systematic means of 
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comparing s t ruc tura l  complexity with control law performance- 

tunately, the generality and diversity of possible SISO structures  a r e  

Unfor- 

so grea t  that this would not be feasible;  however, a particular sequence 

of s t ruc tura l  fo rms  which recursively exploits the concept of "function- 

of-functions " can be defined. This concept was utilized by Kolmogorov, 

Lorentz, and Sprecher i n  their  representations and the author feels that 

this type of s t ruc tura l  arrangement  can generate a wide variety of multi- 

variable functions with a minimum number of SISO function generators.  

This sequence of s t ruc tura l  fo rms  will be denoted by S1 and is defined 

below: 

Definition 4.1:  S is the sequence of s t ruc tura l  forms  composed 1 
of members  S(M, N, K )  which are defined by the following relation 

(4.2.2)  

fo r  all points - x E I C X .  The definition of the implementation se t  I was 

given in Chapter 11, Equation (2 .2 .  5); n is the dimension of the state 

space. 

by a Kth o r d e r  polynomial. 

Each  of the synthesis functions is res t r ic ted to be representable 

To .eliminate needless redundancy, only the 

function g ( e )  will possess  a zeroth o r d e r  coefficient. Thus, a typical 

synthesis function q,(s) ,  q, # gl '  will have the representation 

1 

K 

(4 .2 .3)  

k= 1 
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X 

x2 

"1 

"2 

"2 

Figure 4.1 Block iagram of Structural 
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and the function g ( s )  will have the representation 1 

K 

(4 .2 .4)  

The purpose of restricting the synthesis functions to be Kth o rde r  

polynomials is to guarantee that they a r e  “smooth”. 

S(1, 1, K),  S(1, 2 ,  K), and S(2 ,  I ,  K )  are  presented in block diagram fo rm 

The s t ructures  

in Figure 4.1.  As can be seen f rom the diagrams, these s t ructures  a r e  

in the fo rm of t r e e s  which branch out and become sucessively more com- 

plex as M and N increase.  N is  the number of major  branches of the 

t ree  s t ructure  [ the  number of g ( . )  functions] and M is the number of 

summing junctions encountered along any path f rom the inputs to the 

g(. ) function. The total  number A of SISO functions contained within 

the s t ructure  S(M, N, K )  is given by the formula 

(4 .2 .  5) 

The index A serves  as a means of ordering the various s t ructures  with 

respect  to  complexity. Alternatively, if one is considering a digital 

implementation, an  index D equal to the total  number of numerical con- 

stants (i. e . ,  coefficients of the polynomials representing the synthesis 

functions) which must be stored is given by 

(4 .2 .6 )  

Hence, with these indices A and D one can directly evaluate s t ructural  

complexity and, presumably, the cost  of implementation directly in 

t e r m s  of dollars,  size,  weight, etc. 
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4.3 The S(M, N, K )  Design Procedure 

In this section we wish to outline and discuss the general  approach 

we shall  take in solving the SCOCP problem formulation for the S(M, N, K )  

c lass  of s t ructural  constraints. 

will be "meaningful" for physical problems, one should realize that any 

mathematical model is an  abstraction of physical reality. In addition to 

me rely "solving" a problem formulation for  an  "optimal" control law, 

one should critically evaluate both the model and its "optimal" solution 

to ascer ta in  its validity and utility in  solving the r ea l  physical problem. 

This can be accomplished by using both optimization and stability theory 

in the design process .  Optimization theory should be used with a some- 

what idealized model of the physical situation to determine an  "optimal" 

solution with respect to a reasonable but somewhat a rb i t r a ry  perfor- 

mance index. 

"optimal" solution with respect  to the true physical situation, determine 

its applicability and limitations, and modify it as required. 

fashion one should be able to design pract ical  control systems relevant 

to physical problems. 

structing our design procedure. 

In formulating a design procedure which 

Then stability theory should be used to analyze this 

In this 

We shall adopt this general  approach in con- 

The SCOCP optimization problem for  the S(M, N, K )  c lass  of 

s t ructural  constraints which we would like to be able to solve is: 

"Given a fixed number A of function generators determine 

both the optimal s t ructural  fo rm S(M"., N"., ) composed of 

A function generators and its constituent functions which 

minimize the cost <J>. I '  

4. .r. 
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Unfortunately, the author has  made no progress  on solving this problem. 

The difficulty with this formulation is that it requires the optimization 

theory to  determine not only the optimal synthesis functions but the opti- 

m a l  s t ructural  form a s  well. This is an  extremely challenging problem 

which seems unlikely to be solved with currently available optimization 

techniques. Therefore, we must modify the problem somewhat. The 

problem which actually will be considered i s :  

"Given a specific s t ructure  S(M, N, K )  composed of A 

function generators,  determine the A optimal synthesis 

functions which minimize <J>. " 

This formulation of the problem will be solved in  Chapter V I  and several  

suboptimal techniques for  its approximate solution will be developed in 

Chapter V .  The author envisions that one would initially start with the 

simpler s t ructures  [S (1 ,  1, K) ,  S( l ,  2 ,  K) ,  and S(2,1, K)] , solve the above 

problem for each, and systematically progress  toward the more  com- 

plex ones until a suitable control law and synthesis structure are  found. 

A f t e r  obtaining what appears to  be a suitable control law, the 

It is par-  stability problem should be solved to analyze this solution, 

ticularly important that this be done for  structurally constrained prob- 

lems which a r e  designed by suboptimal procedures;  control laws so 

designed may not be asymptotically stable over all regions of interest  

in the state space. 

might not contain any asymptotically stable control laws e 

of the stability problem provides a means of establishing the asymptotic 

stability of any proposed control law. More important, perhaps, the 

In fact, it is even possible that the constraint set 

The solution 
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stability bounds provide a means of measuring the degree o r  extent of 

this stability. Spe cif ic ally, 

They indicate the general  shape o r  type of feedback control 

laws which a r e  stable and provide qualitative insight into the 

control problem. 

They provide a means of specifying the required size of the 

implementation set I for  a given dynamical system, control 

law, and initial condition set  Q. 

They indicate the appropriate direction (i. e .  , increasing o r  

decreasing the sca la r  value of the control) which would be 

the safest  direction to deviate f rom the optimal value. 

the stability bounds a r e  one-sided, deviations in one direction 

will never threaten stability. 

They provide both qualitative and quantitative information 

about the system stability. 

a very stable system and imply that state variable measure-  

ment e r r o r s ,  noise, o r  other disturbances would not pose 

serious problems. 

Since 

Extremely wide bounds indicate 

Narrow bounds would imply the opposite. 

This type of information should allow one to determine the applicability 

and limitations of any given feedback control law. 

Thus, by utilizing optimization and stability theory in the manner 

indicated, one should be able to design practical  control systems re le -  

vant to physical problems 
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4.4 Gradient Projection o n  S(M, N, K )  

In this section we shall  develop a modified vers ion of the coaven- 

tional gradient projection technique which allows the s t ructural  con- 

s t ra ints  of the S(M, N,  K )  s t ruc tures  to be incorporated directly into 

the optimization problem. Because of the apparent impossibility of 

utilizing any of the conventional Optimization techniques for structurally 

constrained optimization problems, the procedures developed fer their  

solution must  be somewhat indirect - projected gradient techniques. 

These techniques first compute the unconstrained gradient function fo r  

a given control law. 

project the unconstrained gradient function onto the synthesis s t ructure  

such that all modifications of the given control law in the direction of 

the projected gradient will be representable by the given synthesis s t ruc-  

tu re .  

conjunction with gradient projection, constrained optimization problems 

can be solved in a relatively straightforward and computationally feasible 

ma nne r . 

Then a gradient projection algorithm is used to 

By using this combination of conventional optimization theory in 

The essent ia l  difference between the gradient projection problem 

we must consider and that of conventional gradient projection a s  for-  

mulated by Rosen 48-49 is the type of constraints employed. 

s iders  inequality constraints whereas  we must consider a generalized 

Rosen con- 

type of equality constraint and insure that all control law variations 

remain on this constraint surface and hence representable by the 

S(M, N,  K )  s t ructure  
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First we wish to consider the formulation of a conventional gradient 

technique for determining the optimal unconstrained feedback control 
::: 

law U (x) - for a given optimization problem. All gradient techniques 

utilize a recursive algorithm in which a gradient function is computed 

for an existing control law and then fo rm the new improved law by adding 

this gradient function t imes an  appropriately selected sca la r  constant to 

the old law. 

incrementing equation will be of the fo rm 

Thus in solving for  an  optimal feedback control law the 

A 
(x) = U (x) t a G (x) V x E  - x ; R =  0 , 1 , 2 , . * *  

‘ Q t 1  - R -  R R -  
(4.4.1) 

A 
where G (x) is  the gradient function for  the control law U (x) and a 

is  a sca la r  multiplier. This gradient function G (x) is a scalar function 

of 5 which indicates the rate  of change of the cost  < J ( U  ) >with respect 

to a change in the scalar value of the control U (x) at the point - x with 

U (x) held constant at a l l  other points. 

stated as 

Q -  e -  R 
A 

Q -  

R 

Q -  
Mathematically this could be 

Q -  

’ d X E  x (4.4.2) 

It directly follows f rom the above definition that the incremental  change 

in the cost, d a ( U  )>, which resul ts  f rom an  incremental  change in the 

control, due(”), is given by 
Q 

A 
d<J(UQ)> = G (x) dU (x )dz  R -  R -  

X 

(4.4.3) 

For  purposes of computation the state space X will be quantized and 
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represented by a finite set  of points (xi, i = 1, . . - ,  r}. 

subscripts { 1, , r}  will be denoted by R.  For this quantization the 

The set  of integer 

incrementing equation corresponding to Equation (4 .4 .1)  becomes 

(x.) = U (x.)  t a G (x.) V i  E R. (4.4.4) uQ t 1 -1 R -1 a R--1 

where the gradient function G (x.) is defined a s  a -1 

a <J(UQ) > 
G (x.) = V i e  R 

Q -1 a UQCXi) 
(4.4. 5) 

The set  of quantization points (L, i E R )  a r e  not a rb i t ra ry ;  they a r e  

selected such that the incremental  change in the cost, d<J(U )>, which 

results f rom an incremental change in the control, dU (x), is given by 
a 

Q -  

r 

d<J(U,)> = G Q (x.) -1 dU a (x.) -1 

i= 1 

(4.4.6) 

The existence of such gradient functions G (x . )  and corresponding 

quantization se t s  {xi, i E R )  will be established in Chapter V I  for  prob- 

lems of the SCOCP type in which there a r e  no s t ructural  constraints. 

a -1 

In the case of the suboptimal procedures of Chapter V ,  the cost is merely 

a weighted leas t - square-er ror  cr i ter ion of the form 

r 
2 

< J ( U  )> = 1 W(x.)[ U"(x.) - U (x.)] a -1 -1 R -1 
i= 1 

(4.4.7)  

for which the gradient function G (x.) can be directly computed a s  
R -1 

(4-4,  8) 

In  all of these cases  the gradient G(x.)  is the t rue,  unconstrained gradient 

of the corresponding cost  functional and the gradient algorithm can be 

-1 
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expected to converge to the optimal solution which minimizes this cost  

func tio na 1. 

If we now wish to impose s t ructural  constraints upon the problem 

and demand that the feedback controls U (x) be restr ic ted to belong to 

a particular structure S(M, N, K),  it is c lear  that the previously outlined 

gradient procedure must  be modified. 

be loosely stated a s  that of "projecting the gradient function G (x.) onto 

the synthesis s t ructure  S(M, N,  K )  such that a l l  modifications of U (x) 

in the direction of this projected gradient remain representable by 

S(M, N, K) .  " 

6 -  

The required modification may 

a -1 

a -  

The gradient function G (x) indicates how the control U (x) should 
Q -  1 -  

be changed a t  each point - x ; now we wish to determine how the control 

U (x) E S(M, N, K )  can be changed and still generate a U j  + ,(x) E S(M, N, K). 

Recall that each structure S(M, N, K )  has D coefficients which specify 
Q -  

the control law. W e  shall  assume that these are  ordered and labeled 

c l>  czY ''3, It will be convenient to think of this se t  of coefficients 

as specifing a D-dimensional Euclidean vector space Cy and any specific 

Y CD' 

set of values as specifing a point - c E C .  Since the sca la r  output of any 

structure S(M, N, K )  will depend upon both the state - x and the coefficient 

vector - c y  we shall  denote the output of each structure as 

~ s t x ' c l  (4.4.9) 

Since the coefficient vector - c uniquely specifies the feedback control 

law, it is clear that any and all changes in the control law must  be pro- 

duced by changing L c.  

U [ x, c] E S(M, N, K )  by a recursive,  gradient-type algorithm would be 

Hence the most general  possible variation of 

s - -  
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one in which the recursion formula is of the fo rm 

(4.4.10)  

where 6c is  a D component vector denoting the relative increment o r  

change in each of the components of - c .  Note that with this formulation 

all control laws Us [ E ,  sR +. 

representable by S(M, N,  K )  - a fact which distinguishes this approach 

f rom conventional pradient projection. 

-4 

generated by any value of a will be 
R 

We a r e  now able to formulate the gradient projection problem. 

Note that the function G ( x . )  has  two basic properties 
-1 

G ( x )  indicates the direction of steepest  ascent (or  descent) 

of the cost  - i. e . ,  C(xi) indicates both the direction (positive 

o r  negative) and the relative amount that the control should 

be changed at each point x. to most rapidly change < J ( U  )>. 
-1 R 

The magnitude of G(x . )  indicates the rate  of change of the 

cost pe r  unit change in the sca la r  value of the control at the 

-1 

point x.. 

preceeding discussion it is clear that the gradient projection 

-1 

must  convert the function G ( x . ) ,  zi E X, into a vector - 6c E C.  

wish this vector - 6c to be the projected equivalent of G(xi), it is c lear  

that - 6 c  should have the following two properties 

Since we 
-1 

1) At the point c E C, the vector  6c must  point in the direction -,e -1 

of steepest  ascent of the cost  < J ( U  )>. Q 

2)  The Euclidean length of 6 c  , Il6c 11 must be equal to the 

rate  of change of the cos t<J (U  ) > p e r  unit distance alol-Y 

thv direction of the vector 6c at  the point c 

--a - -a  

Q 

-Q -Q ' 
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These two conditions will uniquely specify 6c . 
useful in that it directly re la tes  changes in  the coefficient space C to 

changes in the value of the cost. Note particularly that when a mini- 

mum i s  reached 116~ 11 = 0. 

The second i s  quite 
-Q 

-Q 
TI;.? process  outlined above i s  equivalent to expressing the cost  

<J(UQ) > explicitely as a function of - c and then directly evaluating __. 6 c 

by taking the gradient of <J(c)> as 

- 6c = V[<JfS)>l (4.4.11) 

Of course,  the latter approach would be preferable;  however expressing 

the cost  as <J(c)>  - is  completely impossible for  the complex s t ructures  

S(M, N,  K ) .  Hence we adopt the somewhat roundabout but computationally 

feasible process  of first computing G(x) - and then projecting it on S(M, N,  K )  

to obtain - 6c. 

We now precisely define the gradient projection problem. 

Definition 4.2:  Gradient Proiection on S(M. N. K )  

Given: A feedback control law Us[ x, c f E S(M, N, K)  specified by a - -Q 
D component vector c and a sca l a r  gradient function G (x.) 

-Q Q -1 
defined on the se t  {x. ; i E R )  for  which the change in the 

cost, d<J(UQ)>, which resul ts  f rom a change in the control 

law, dU (x), is described by 

-1 

Q -  

(4.4.12) 

i= 1 

Problem: Determine the vector 6 c  which a t  the point c E C points in 
-1 -1 

the direction of the steepest  ascent of the cost  < J ( U  (c  >)> 
Q -& 



-7 5- 

and whose length, ll6c 11 
cost per  unit distance in this direction. 

is equal to the rate of change of the --a 

Before proceeding to solve the projection problem, we need t o  

derive several  preliminary results.  First we need to  express  the change 

in the sca la r  value of the control at each point x .  in t e r m s  of the com- 

ponents of - 6c. If we define 6Us[xiy c ,6c]  a s  

-1 

then f rom the usual limiting process  it follows that 

1 u [x. c t a 6c] - u Ex. CJ  s -1'- - s -1'- 
a 

d U  [x . , c ,6c j  s - 1 - -  = l im 
a-+ 0 da  

and that 

Now if  we define 

aus[xi9 51 
D.[x. c] = 

J -1'- a cj  

we obtain 

dUs[EiY 2, &I 
= 5 D.[x . ,c ]  6c da J - 1 -  j 

j = l  

(4.4.13) 

(4.4.14) 

(4.4.15) 

(4.4.16) 

(4.4.17) 

In formulating the above expression we have assumed the existence of 

the functions D.[giyc] e This will now be established and explicit for-  
J 

mulas for  their  computation developed. 

F r o m  the definition of the S(M, N, K )  structure,  Equation (4,2.  Z ) ,  

it is c lear  that the design of the structure was based on  the "function- 
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of-functions’’ concept. 

shown in Figure 4 . 2 .  

The basic building block of the structure is 

Figure 4.2 Building Block of S(M, NJ K) Structure 

F o r  this type of s t ructural  formation the basic input-output relation of 

each function generator is 

f Q t l  - - *Qt1  [ “ a  $11 = $ a t 1  iff!] (4.4. 18) 

i= 1 

Now we wish to consider some specific point - x and some specific se t  

of coefficients c .  will 

have a specific numerical value which we shall denote a s  f Q  and S . 
The differential relationship between the change df in the scalar  

value of the output corresponding to a change df! in the sca la r  value 

of one of the inputs is given by 

F o r  this x and c, all the functions f R  and s 
R - - - - 

R 

1 
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(4.4.19) d f a t  =[( d q j  t d s j  t 1 ))-Idf! 
R $1  

Now consider the general  S(M, N, K )  s t ructure  and any one of its 

adjustable coefficients, ci. 

synthesis function which we shall  label q 0 . I n  tracing the path from 

this function to the output, sequentially label each synthesis function 

This coefficient ci will belong to some 

encountered II, 

structure of S(M, N, K),  a change dfo in the sca la r  value of the output 

f of the function $ 

of those functions encountered along the path from a 0 to  the output. 

Thus repeated application of Equation (4.4.19) will give 

and its output f ; ,g = 1, . . . , z .  Note that due to the tree 
, Q  R 

will only induce a change in the inputs and outputs 
0 0 

(4 .4-20)  

Now each of the synthesis functions ,J 

of the form 

is represented by a power se r i e s  a 

K 

k= 1 

He nce 

(4.4.21) 

(4.4.22) 

The change dfo in the output of $ 

coefficient c which is one of the coefficients Ao k in the power ser ies  

will be produced by the change in  the 
0 

j 
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representation for ,J, . We shal l  denote it a s  Ao 

it directly follows that 

F r o m  Equation (4.4.2 1) 
'0 k"' * 

.L 

(4.4.23) 
k ''. 

dfo = (Sg)  dc 
j 

Inserting Equations (4.4.22) and (4.4.23) into Equation (4.4.20) and 

recalling the definition of D.  [x c] gives 
J 4'- 

Each of the coefficients A' ( j  = 0,1, . . . , z) in  the above expression is 

some component of 2 ,  and each of the t e r m s  7 (1 = 0 , l  , . . . , z )  is a 

known function of x and c - each 7 is merely the input to one of the Q 
function generators  in  the control law U [x, c] . 
D.[x., c] 

Note that for  a l l  finite xi and c, 

the preceeding resul ts  in  the following theorem. 

k 

R 

- - 

Thus the functions s - -  

can be directly computed for  any control law U [x . ,  C]E S(M, N,K).  
J -1 - s -1 - 

- - J -1'- D.[x. c] will be finite. W e  summarize 

Theorem 4.1: For  all s t ruc tures  S(M, N, K )  and any Us& - c] E S(M,N,K), 

the functions D.[x,cl defined as 
J - -  

a UJX, SI 
D.[x,s]  = 

J -  a c j  

exist, a r e  finite, and can be directly computed with the formula 

K 

= 1 kA[ [ k=l  1 k= 1 

(4.4.25) 

- k" 
(so)  

(4 .4.26)  

where the t e r m s  involved have been previously defined. 
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Now we proceed to solve the projection problem. Equation (4.4.6) 

states that the change in the cost d<J(U )>which results f rom a change 

in the control dU (x) is given by 
Q 

Q -  

x . )dU (x.) 
Q -1 

(4.4.27) 

i= 1 

Now we introduce the restriction that a l l  variations in the control d U  (x) a -  
be such that UQ+l (2) E S(M, N, K )  for  all values of a . This requires  

Q 

d U  (x.)  = dU [x, c,  6 c ]  =I D j [ z i Y ~ ]  6cj I daQ Q -1 s - - -  
Ij=l 1 

(4.4.28) 

The re fo re  

r 

d<J(UQ)> = 1 G ( E ~ )  [t D .  [xi, C] 6 c ] da (4.4.29) 

i= 1 j= 1 

The above equation directly re la tes  the total  change in the cost to the 

change in the coefficients of the S(M, N, K )  s t ructure .  

d <J(U)> i n  the cost, Equation (4.4.29),  corresponds to a distance in 

C of da ll6c - 1 1  , where the norm symbol will denote the usual Euclidean 

The change 

norm. Thus the first condition of the gradient projection problem - the 

requirement that - dc point in the direction of steepest ascent - requires 

that - dc be the vector which maximizes 

(4.4. 30) 

D 

i= 1 j=  1 

If we interchange summation signs in the above equation and define 



-80-  

r 
n 

F. = G(x.)D.[x -1 j -i’- C] 
J 

(4.4.31) 

i= 1 

Equation (4.4.30) becomes 

(4.4.32) 

Due to the linearity of - 6c in both the numerator and denominator of the 

above equation, the first condition will only specify & to within a scalar  

multiple. The second condition will specify the magnitude of - 6 c  . It 

requires that 

Using Equation (4.4.32) the second condition becomes 

11% I 1  
j= 1 

Thus the two equations specifing a r e  

subject to 

Max 
6c E c - 

(4.4.33) 

(4.4.34) 

(4.4.35) 

(4.4.36) 

j=  1 

The solution to these equations is ra ther  easy and canbe most easily established 

by defining e as  the angle between the vectors - F and in  the usualmanner  
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'= 1 
COS(@) = J I I  Xll ll&lI (4.4.37) 

Then the first condition becomes 

with the obvious solution, Cos(@) = 1. Hence we can conclude that 6c 

and - F are  paral le l  and that 

- 

where B is an unknown 

2 
IIGCII = Ilsll 

- 6 c =  B F  - (4.4.39) 

sca la r  multiplier. 

. I/_FII * c o s ( e )  = Il&II - l I _ ~ l l  

The second condition requires  

(4.4.40) 

f rom which we conclude that B = 1 and hence 

- 6 c  = - F (4.4.41) 

The preceeding resu l t s  a r e  summarized in  the following theorem. 

Theorem 4 .2  : The solution of the problem of Gradient Projection 

on S(M, N,  K )  is the vector - 6 c  which may be computed by the following 

f o r mula 

6c = 2 -1 G(x.)D.[x. ,cJ  J -1 
j 

i= 1 

(4.4.42) 

In this section we have developed a technique "gradient projection' '  

which, when used in conjunction with the unconstrained gradient function 

G ( x ) ,  specifies the direction of steepest  descent in the coefficient space 
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C for any control Us(x,  - -  c) E S(M, N, K).  In the following two chapters 

methods will be developed for computing G(x) - and explicit algorithms 

will be developed for solving the structurally constrained optimization 

problem. An example illustrating the application of these formulas in 

the solution of an optimization problem is presented in Section 6. 5. 



CHAPTER V 

SUB OPTIMAL DE SIGN TECHNIQUES 

5.1 Introduction 

The purpose of this chapter is to develop suboptimal design pro- 

cedures for solving the SCOCP. 

on appropriately "fitting" the suboptimal control Us(x)  - E S(M, N, K )  to 

the unconstrained optimal feedback control law U':'(x) - so as to minimize 

All of the design techniques are  based 

some suboptimal design criterion. Hence, all of the computational 

algorithms will require  the numerical  values of U'r(x) - as a function of 

the state (i. e . ,  a dynamic programming table of the values of U".(X))* - 

.I, 

.L 

Three suboptimal design c r i te r ia  a r e  proposed in Section 5 . 2  and 

The first suboptimal design pro- the advantages of each a r e  discussed. 

cedure (which can be used with any of the three c r i t e r i a )  is formulated in 

Section 5.3 and a n  explicit computational algorithm for  its application is 

developed. 

of the three design c r i t e r i a  are discussed in Section 5.4.  

The charaxter is t ics  of this algorithm and the effectiveness 

A second suboptimal design procedure i s  formulated in  Section 5. 5. 

Although somewhat m o r e  complex and computationally demanding than 

the first, it is applicable to a wider variety of problems and produces a 

better suboptimal design, 

5.6.  

Its character is t ics  a r e  discus sed in  Section 

5 .2  Cr i te r ia  F o r  Suboptimal Design 

The resul ts  of Chapter I11 provide a basis  for  developing a number 

In this section of suboptimal design procedures for  solving the SCOCP. 

- 8 3 -  
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we shall consider three possible suboptimal design c r i te r ia ;  the following 

section will develop an  explicit computational algorithm which can be used 

with any of the three.  

results one can expect f rom each of the c r i te r ia .  

Then in Section 5.4 we will discuss the type of 

The following definition will be required. 

Definition 5.1: Let Q0CX be the closed bounded se t  of minimal 
d. 

size for  which the solution of - j ,  = -- f (x) + - b U‘‘.(X) - for  every initial condition 

x E Qo remains in B for  a l l  t ime. 
-0 0 

The set  a0 is  merely that region of the state space spanned by all optimal 

t ra jector ies  originating in Q ; it can usually be determined by generating 

a few trajector ies  start ing f rom cr i t ical  points on the boundary of Q and 

utilizing the fact that t ra jector ies  can never intersect.  

0 

0 

The results of Chapter I11 indicate that any of the following procedures 

should provide a good suboptimal de sign technique : 

Criterion 1: Find the Us(x)  - E S(M, N,  K )  which minimizes 

2 
[U”(x) - Us(x)] d_if 

The utilization of this least-  square-er ror  mathematical fitting cri terion 

could be justified on the basis that such a cr i ter ion will generate a sub- 

optimal control which tends to be close to the optimal everywhere; we 

have previously established in Theorem 3 . 1  that all such controls will 

generate costs which a r e  likewise close to the optimal cost. 
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Cri ter ion 2 :  Find the U (x) E S(M, N, K )  which minimizes s -  

where 

a s  defined in  Section 3.4. 

This cr i ter ion can be justified by observing that if 

then f rom the resul ts  of Section 3 .4  it follows that 

0 Js(x) - J"(x) 5 E J*(x) - vx - E 92 

The above cr i ter ion will  guarantee that E[x, - Us(x)] - never exceeds its 

average value by a large amount; hence, E will tend to be a s  smal l  as 

possible and the suboptimal cost  should be close to the optimal every- 

where * 

Criterion 3 :  Find the U (x) E S(M, N, K )  which minimizes s -  

0 
92 

This cr i ter ion can be justified a s  follows: 

minimizing the excess  suboptimality J (x) = J ( E )  - J"'(x) - is equivalent 

Theorem 3 .4  establishes that 
.r, 

2 -  S 
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to minimizing J (x). 

functional for J (x) is 

This theorem fur ther  establishes that the cost s -  

2 -  

a3 

(5.2.1) 
0 

where the integral is to be evaluated along the suboptimal trajectory.  

This expression can be transformed f rom an  integral  over  t ime into an  

integral over  the arc length of the suboptimal t ra jectory by using the 

following theorem of Rudin 52 [ Theorem 6.35, page 1251. 

Theorem 5.1: 

k 

Let - X(T) be a continuous mapping of an  interval 

[0,  t] into R . 

and has length j ( t )  

If - x ( T )  i s  continuous on [0, t ]  , then - x ( T )  is rectifiable 

t 

0 

(5 .2 .2)  

Since this integral  is a Riemann integral, it is valid for  t = 00 if the 

integral converges. Since we a r e  only considering dynamical systems 

which are  asymptotically stable with finite cost, it i s  reasonable to 

assume that a l l  t ra jector ies  generated by such systems will have a finite 

length. 

the infinite t ime integral  [0, a). 

We shall  make this assumption and use the above integral  over 

Differentiating Equation (5.2.2) with respect  to t ime gives 

(5.2.3) 

For  the dynarnical system 
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j, = f(x) t b U (x) s -  - - -  - 

this becomes 

(5.2.4) 

( 5 . 2 .  5) 

where - x ( j )  i s  to be interpreted a s  

- X(R)  = rr[t(a)l 

Observing that ~ ( 0 )  = 0 and defining j ( m )  = L, we now convert 

gration over t ime into an integration over the a r c  length of the suboptimal 

the inte- 

t ra jectory a s  

(5 .2 .6 )  

As Equation ( 5 . 2 . 6 )  indicates, the integrand in this cost functional spec- 

ifies a t  each point - x the amount of incrementalexcess suboptimality (i .  e .  , 

the difference between the increment added to the suboptimal cost and that 

added to the optimal cost)  for  any t ra jectory passing through this point - x. 

Since minimizing the excess suboptimality i s  equivalent to  minimizing the 

suboptimal cost, the process  of minimizing the average incremental sub- 

optimalityover !2 (i. e . ,  Criterion 3 )  should be an excellent designprocedure.  
0 

5 . 3  The S D P l  Algorithm 

In this section we shall formulate the f i r s t  suboptimal design pro- 

blem (SDP1)  and develop an explicit computational algorithm for  i ts  

solution. The S D P l  formulation i s  designed for use with any of the 

three c r i te r ia  discussed in the previous section. As stated, none of 

these c r i te r ia  a r e  in a computationally feasible form because of the 
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impossibility of analytically performing the indicated integration. 

we shal l  do the integration numerically by approximating the integral  by 

a summation over a se t  of r equally spaced grid points which span !2 

As in Section 4.4, the se t  of integer subscripts will be denoted by R and 

the se t  of grid points by {zi, i E R}. 

c r i te r ia  should be smooth, replacing the integration by this summation 

should introduce only smal l  e r r o r s  for any reasonable quantization level. 

F o r  each of the quantized c r i te r ia ,  the unconstrained scalar  gradi- 

ent function G(x.) defined in Section 4.4 can be directly computed a t  each 

grid point x . .  

Instead, 

0 

Since the integrand of a l l  three 

-1 

The analytic expression for  G(x.1 in each case is  
-1 -1 

.I. 

Criterion 1 :  W X . )  -1 = - 2 [U'(x.) -1 - u (x.)] s -1 

d U  (x.) s -1 
Criterion 3 :  G(x.) = - 

-1 

where 

Thus, for  any of the three c r i te r ia  and any given control law U (x) E 

S(M, N,  K), the gradient projection algorithm can be used to compute the 

vector specifying the direction of steepest  ascent in the coefficient 

space C for the cost of the particular cr i ter ion used. 

s -  
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We shall  assume that one of the three c r i t e r i a  has been selected 

Using the notation of Section 4.4,  let  the quantized cost  of the for use.  

selected cr i ter ion be denoted as <z($ whose unconstrained 

function is G(x.). We a r e  now able to formally state the first 

design problem. 

-1 

gradient 

suboptimal 

Definition 5.2:  Suboptimal Design Problem 1 (SDP1) 

Given a s t ructural ly  constrained optimal control problem and its 
.b 

unconstrained optimal feedback control law U'r(x). - 

constrained solution U''.(X) E S(M, N, K) specified by the D component 

vector - c". which minimizes the cost  <T(s$. 

Determine the optimal 
4. 

s -  
4. 

The following algorithm based on a recursive gradient procedure can be 

used to solve the above problem. 

Algorithm fo r  the Solution of SDPl 

Determine the set  !2 and select  a n  appropriate set of grid points 
0 

which span it. 

Set the i teration index j to 0 and start with some initial control law 

UExy GI E % M Y  N, K). 

Compute G (x.) 

Compute 6 c with the gradient projection algorithm. 

Determine the optimal value of a a , for  which the cost 

Vi  E R.  
.t -1 

--R 
.b *,- 

R '  a 
- a tic 3 will be a minimum. (SJ -R-R 

J, 1. 

Set c = c - a 6c and then increment the index 4 by 1,  
--R+1 --R R-R 
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7 )  Evaluate some preselected termination cr i ter ion and then either 

re turn to step 3 o r  stop a s  indicated. 

5.4 Evaluation of the S D P l  Algorithm 

In evaluating a suboptimal design procedure, the two considerations 

of prime importance a r e  its computational requirements and the sub- 

optimality of i ts  solutions. These will be discussed in  the foll.owing 

paragraphs. However, there is a third major consideration for the 

S D P l  algorithm. 

the optimal unconstrained feedback control law U'(x) - be known a s  a 

This algorithm requires that the numerical values of 
4, 

function of the state. This data could be obtained by solving the uncon- 

strained optimization problem by dynamic programming. However, 

dynamic programming solutions generally require considerable computa- 

tional time. Thus, if U (x) - i s  unknown, the computational requirements 

for computing U"(x) - must be considered in addition to those for  the 

S D P l  algorithm. 

::: 

.L 

F r o m  a computational standpoint the S D P l  algorithm is extremely 

It does not require the generation of any system trajector ies  

The only computation which 

attractive.  

o r  the solution of any differential equations. 

is required is  that of evaluating sca la r  functions at  the grid points. Hence, 

the required computational time should be quite small  for  each iteration. 

The author would estimate that with a modern computer (i. e .  , system 

360/65, etc.  ) the iteration time would be from 1 to 10 seconds for a 

four state variable system and a state space quantization of 10, 000 gr id  

points ./ Although gradient procedures typically exhibit slow convergence 
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near  the optimum, this rapid iteration rate should more than compensate 

and allow one to solve three and four state variable problems in less  than 

five minutes of computation t ime. 

The S D P l  algorithm has been tested with a l l  three c r i te r ia  on sev- 

e r a l  two dimensional problems in which the system and structurally con- 

strained suboptimal control were l inear,  the unconstrained optimal con- 

t rol  was nonlinear, and the initial condition probability distribution Q (x) 

was uniform over a hypersphere centered at the origin. 

0 -  

Although each 

of the c r i te r ia  produced reasonably good results (within 6Yo of the optimal 

constrained solution), the third cr i ter ion was somewhat better than the 

second and both were considerably better than the first. In a l l  of the 

cases  tested, the third cr i ter ion produced control laws whose cost was 

within 2% of the optimal constrained cost .  Based on these resul ts ,  - the 

author concludes that the third cr i ter ion is the best  choice f o r  formula- 

ting a suboptimal design procedure. 

the other c r i te r ia  have certain advantages; the second cr i ter ion will  

However, it should be noted that 

produce the best guaranteed bound on performance and the computational 

formulas of the first cr i ter ion a r e  somewhat simpler than those of the 

other two. Hence, they may be preferred in certain applications. 

An important res t r ic t ion on the c lass  of problems for which the 

S D P l  algorithm is  applicable should be noted. 

the S D P l  formulation is  that minimizing the various c r i te r ia  a t  each 

The basic assumption of 

point x E L? 

dure.  F o r  cases  in which Q (x) is  a uniform distribution over a hyper- 

sphere, the resulting t ra jector ies  tend to be uniformly distributed through- 

with uniform weighting i s  a good suboptimal design proce- 
0 - 

0 -  
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out $2 and this assumption appears to be valid. However, if Q (x) is  

not uniform and if the resulting t ra jector ies  tend to concentrate in c e r -  

tain portions of a 
0' 

optimal procedure. 

0 0 -  

the utilization of a uniform weighting is a highly sub- 

Hence, the S D P l  algorithm should only be used for 

problem formulations in which Q (x) will generate t ra jector ies  which 
0 -  

tend to be uniformly distributed throughout Go. 
.I- 

In conclusion, for problems in which U'(g) is known o r  can be 

computed and f o r  which Q (x) generates t ra jector ies  which a r e  uniformly 

distributed throughout 52 

effective method for  solving structurally constrained optimization pro-  

0 -  

the S D P l  algorithm seems to provide an 
0' 

blems. 

5. 5 The SDP2 Algorithm 

In this section we shall  formulate a second suboptimal design pro- 

blem SDP2  and develop an explicit computational algorithm for its solu- 

tion. 

cable to problems with completely general  initial condition probability 

distributions Qo (5). 

- Its  major advantage over the S D P l  formulation is that it is appli- 

The basic assumption of the S D P l  formulation is  that minimizing 

a given cr i ter icn at each point x E 52 with uniform weighting is a good 

suboptimal design procedure. F o r  cases  in which Q (x) is a uniform 

0 - 

0 -  

distribution over a hypersphere, the resulting t ra jector ies  tend to be 

uniformly distributed throughout So and this assumption appears to be 

valid. However, if Q (x) is not uniform and if  the resulting t ra jector ies  

tend to concentrate in cer ta in  portions of 

weighting is a highly suboptimal procedure. Instead, a weighting function 

0 -  

the utilization of uniform 
0' 
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should be introduced which correct ly  compensates for  the trajectory 

density a t  each point. We  shall  incorporate this modification into the 

formulation of the second suboptimal design problem. Actually, a 

weighting function itself will not be used; instead, the se t  of grid points 

will be distributed throughout Go proportional to the trajectory density, 

thus achievinp the same result .  

The cost functional of the SCOCP is 

QO 

Using the definition of the excess suboptimality J (x ) 2 -0  

.I. 

J (x ) = Js(x ) - J.”(x ) 2 -0 -0 -0 

<J>as 
we can express  

(5.5.1) 

(5. 5 .2)  

Since the first integral  is independent of the control. law Us(s ) ,  mini- 

mizing (J) is equivalent to minimizing the second integral which we 

shall denote a s  

2> = Jz(xo) Qo(zo) dz0 (5.5.4)  

0 

Since minimizing the suboptimal cost 

stantially eas i e r  than attempting to minimi 

problem will be formulated as that of mini 

J < 
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If we were considering l inear systems and l inear feedback control 

laws, a transition mat r ix  could be used to express  the propagation of the 

initial condition probability distribution. However, for  the nonlinear 

systems and nonlinear control laws under consideration, no computation- 

ally feasible equations exist  for  propagating the initial condition proba- 

bility distribution. 

accomplishing this. 

(i. e . ,  represent  Q (x) by a finite set  of impulses distributed throughout 

as defined below. 

Thus a n  alternative method must be developed for 

The procedure we shall  use is to quantize Q (x) 
0 -  

0 -  

QO)  

A 
The distribution Q (x) will be called the quantized Definition 5. 3 :  

0 -  

initial condition probability distribution of Q (x) if 
0 -  

(5.5. 5) 

a 
A 
Qo(X) = Q, 6 [ II(2 - zk)  II] 

k= 1 a 

where a is some positive integer, each x E Qo9 each Q k )  0,  -k 
i= 1 

and the points zk and weights Qk a r e  selected so that 

(5. 5.6) 

Since all of the Us(x) - E S(M, N,  K )  are infinitely differentiable, their  

corresponding costs J2(g) should be extremely smooth functions; hence, 

the e r r o r  introduced by replacing Qo(2) with Qo(z) should be small  for 

any r e  as onable quantization 

A 
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With the replacement of Qo(if) by Q(z), the expression f o r  
A 

becomes 

(5.5.7) 

a 

Qz> = Qk J(xk) 

and thus <J2> is merely the weighted sum of the costs for  a finite se t  

of initial conditions 

a s  

Utilizing Equation (5 .2 .6)  we can express  

(5. 5. 8 )  

thus converting G2> into the sum of a finite set  of integrals along 

t ra jector ies  in the state space. 

By utilizing the Newton- Cotes integration formulas to approximate 

the t ra jectory integrals, the cost functional (J2> can be converted into 

the summation of a sca la r  function over  a finite se t  of grid points. These 

formulas replace the integral  by a weighted sum of the values of the 

integrand at equally spaced points along the integration range as  indicated 

L B 

(5. 5 .9 )  

where 

(5 .5 .10 )  L 
j j  = pj 

and W. (p )  is a 
3 

index j and p ,  

pre specified weighting function dependent only on the 

the number of intervals between the p t 1 data points, 
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These integration formulas a r e  extremely good - particularly if the inte- 

grand is smooth. Fo r  example, the value of the integral  of ex over [0, 11 

can be computed by the 6 data point Newton-Cotes formula with an e r r o r  

of l e s s  than For the class  of problems under consideration in which 

al l  of the suboptimal controls a r e  infinitely differentiable, the integrand 

in Equation (5. 5.8) should be smooth; therefore,  the Newton-Cotes inte- 

gration formulas should be very effective. The Newton- Cotes integration 

technique is  described in considerable detail in references 53 and 54 where 

the values of the weighting function W.(P)  a r e  tabulated for a l l  values of 
J 

p up to  20. 

If the Newton-Cotes integration formula with f3 + 1 equally spaced 

data points is used for each of the t ra jector ies ,  <J2> can be expressed a s  

k= 1 j= 0 

(5. 5.11) 

th where L(xk) is the length of the k 

condition zk and zk,j is the jth data point along this trajectory.  Equa- 

tion (5  5.11 ) can be placed in a more  convenient form i f  a single index 

t ra jectory start ing from the initial 

i is used to label each of the grid points. Each value of i will have a 

unique, one-to-one correspondence with each index pair  (k, j )  as speci- 

fied by the formula 

i = a ( k -  1) t j -t 1 (5.5.12) 

We define 

r = a(@ t 1) (5. 5, 1 3 )  
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(5. 5.14) 

(5. 5.15) 

The cost <J2> 

r 

expressed in t e r m s  of the new notation is 

i= 1 

Thus by using the initial condition probability distribution Q (x) and the 

system dynamics to specify a particular se t  of grid points, we have been 

able to express  <Jz) as merely a summation of a sca la r  function over 

a s e t  of grid points. 

0- 

< J ~ >  is s imil iar  in form to <53>9 Although the cost functional 

the cost functional used in SDPl with Criterion 3 ,  (J2> differs in two 

important respects.  First, <T3> is not the cost functional of the SCOCP; 

it is mere ly  the cost functional of a suboptimal design problem which 

was selected because its optimal solution is expected to be close to that 

of the SCOCP. In contradistinction, G2> represents  the excess cost 

of the SCOCP which resul ts  f rom suboptimality (i. e . ,  <J2> = <Js> - (J")); 

thus, except for  e r r o r s  introduced by the quantizations employed, mini- > is precisely equivalent to  minimizing the cost functional of miz ing 

the SCOCP. Second, whereas the grid points x in <y3>are fixed, 

specified a pr ior i ,  and completely independent of the suboptimal control, 

the grid points x. used in <Jz> depend on the particular control used and 

will change a s  the control is changed. 

2 

-i 

-1 

If the unconstrained sca la r  gradient function Gtx.) for G2> defined 
-1 

in Section 4.4 by Equation (4.4,  5) a s  
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(5. 5.17) 

could be computed at each grid point xi for  <Jz>. one could formulate 

a simple gradient algorithm fo r  solving the SCOCP. 

in form between <j3) and (J2). one might suggest that the cor rec t  

expression for G(x.) should be 

Due to the similari ty 

-1 

(5. 5.18) 

where 

This expression would be co r rec t  if the grid points were fixed a s  in the 

case of (5,) in SDPl and did not depend upon the control Us(x).  - -  How- 

ever  since the grid points of (Jz) do depend on U (x), Equation (5. 5.18) 

is not the cor rec t  expression for G(x.). In Chapter V I  we shall  develop 

a method for computing the cor rec t  gradient function for <J2> and then 

formulate an algorithm for  solving the SCOCP. However, the procedure 

which will be developed there for computing G(x.) is considerably more 

complex than that of computing the function defined by Equation (5.5.18). 

s -  

-1 

-1 

Experience has shown that although the function defined by Equation 

(5. 5.18) is not the cor rec t  gradient function for  <Jz>. this function is a 

good approximation to it. As the second suboptimal design problem we 

shall  propose utilizing a gradient algorithm in which one attempts to 

minimize <J2> by using the expression of Equation (5,5.18) for  the 

gradient of <Jz>. Since this expression is not the cor rec t  gradient for 
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(Jz}, the algorithm will not converge to the optimal solution of the 

SCOCP and hence is  a suboptimal procedure. Nevertheless, in the cases  

tested this algorithm has produced control laws fo r  which the correspon- 

ding costs a r e  less  than . 570 above the optimal constrained cost. Thus, 

this algorithm seems to provide a computationally feasible procedure 

for approximately solving the general  SCOCP at an acceptable level of 

suboptimality. 

design problem. 

W e  a r e  now able to formally state the second suboptimal 

Definition 5.4: Suboptimal Design Problem 2 (SDP2) 

Given a structurally constrained optimal control problem and i ts  
:k 

unconstrained optimal feedback control law U (x). - 

optimal control law Us(x) - E S(M, N, K )  specified by a D component vector 
A - c which approximately minimizes <Jz >by using a recursive gradient 

algorithm in which the function defined by Equation (5. 5. 18) is  used a s  

the gradient function of <Jz >. 

Determine a sub- 
A 

The following algorithm can be used to solve the SDPZ. 

Algorithm for  the Solution of SDP2 

Select an appropriate set of quantized initial conditions which approx- 

imate Q (x) and select  f3, the number of intervals used in the Newton- 

Cotes integration formula. 

0 -  

Set the iteration index Q to 0 and s ta r t  with some initial control law 

U s [ 3 C 0 I  E S(M, N9 K ) *  

Using U [x, c I , generate a t ra jectory for each of the quantized initial 

conditions and determine the set  of gr id  points {zil i E R}. 

s - -1 
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Use Equation (5. 5.18) to compute the approximate gradient function 

at each grid point. 

Compute d c with the gradient projection algorithm. -,e 
.b -4- 

Determine the optimal value of a a a’ a ’ 
<J (c - a dc )> will be a minimum. 

for which the cost  

2--a 1--R 
:k 

Set c = c - a dc and then increment the index 1 by 1. 

Evaluate some preselected termination cr i ter ion and then either 

re turn  to step 3 o r  stop as indicated. 

-13.1 -a 1-1 

Evaluation of the SDP2 Algorithm 

In comparing the SDP2 and S D P l  procedures, one concludes that 

the SDP2 formulation is more  accurate,  applicable to more general  pro- 

blems, but has more extensive computational requirements.  

SDPl algorithm, it requires the numerical  values of the optimal uncon- 

strained feedback control law U’(x) - a s  a function of the state. 

Like the 

.l. 

The SDPZ formulation is more general  than that of the S D P l  in that 

it may be used with cGmpletely general  initial condition probability dis-  

tributions instead of only those which generate t ra jector ies  which a r e  

uniformly distributed throughout $2 . 
0 

The author has tested the SDP2  algorithm on several  linear two- 

In the cases  dimensional problems which could be solved analytically. 

tested,  the SDP2 algorithm produced control laws whose costs varied 

from . 12% to . 5% above the optimal constrained cost. 

better than the 1% to 2% above optimal of the SDPl algorithm. 

This is somewhat 
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F r o m  a computational standpoint, the SDP2 algorithm i s  consider- 

ably more  complex. 

generated on each iteration. 

computed at each of these grid points - presumably by interpolation from 

the dynamic programming table. 

considerable computational time - probably increasing the iteration time 

by a factor of 5 to 10. 

A new set of t ra jector ies  and grid points must be 

Furthermore,  the value of U ” ( x )  - must be 
.b 

Both of these operations will require 

A possible compromise between the SDPl and SDP2 algorithms 

should be mentioned. 

computed on only the first o r  second iteration and held fixed for  all 

future iterations. 

to the cor rec t  weighting for the given Q (x) to produce a good suboptimal 

design, yet retain the computational advantages of the SDPl  algorithm. 

The applicability of this procedure remains a topic for  future research.  

The set  of t ra jector ies  and grid points could be 

This might give a sufficiently accurate approximation 

0 -  



CHAPTER VI 

SOLUTION O F  TKE OPTIMIZATION PROBLEM 

6.1 Introduction 

The purpose of this chapter i s  to develop an  optimal design proce- 

dure for  solving the SCOCP. 

preceeding chapter, this design procedure does not require the numer- 

ica l  values of U-'.(x) - o r  any other precomputed information. An expres-  

sion for  the Frgchet derivative of the cost with respect to  a variation in 

the feedback control law i s  developed in Section 6 . 2 .  

i s  utilized in Section 6.3 to formulate an explicit computational algorithm 

for solving the SCOCP. 

ments of this algorithm a re  discussed in Section 6.4. 

Unlike the suboptimal techniques of the 

.!, 

This expression 

The character is t ics  and computational require - 

An example i l lus- 

trating the procedure i s  presented in Section 6. 5. 

6 . 2  Derivation of the Feedback Frgchet Derivative 

An expression fo r  the Frgchet derivative of the cost with respect 

to a variation in the feedback control law is derived in this section for  

the case in which the initial condition i s  a single point x . the following 
-0 ' 

section extends the resul ts  to the more general  case of an  a rb i t r a ry  

initial condition probability distribution Q (x). 
0- 

The SCOCP problem formulation considers dynamical systems of 

the form 

= F[x ,  U (x)] = -- f(x) t - b U (x) (6 .2 .1)  s -  s -  - _ -  
with c o st funct ionals 

-102- 
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(6 .2.2)  

0 0 

We shall  use the notation F and L to denote the total (not partial)  

derivative of the functions F[x, U (x)] and L[x, U (x)] with respect to 

-X -X 

s -  - s -  -- 

(6.2 .3)  

(6 .2.4)  

Note that F is a matr ix  while L is a vector. Let U(x) - be any feed- 

back control law for which the dynamical system of Equation (6.2.1) is 

-X -X 

asymptotically stable, J(x)  - its cost, and - x(t) its t ra jectory f rom the 

initial condition x . Let U (x) = U(x) - t 6U(x), - where 6U(x) - is any infin- 

i tesimal variation for which 6U(O) - = 0. 

sponding to U (x) and x (t) its t ra jectory f rom the initial condition x - 
We define - h(t)  as 

-0 1 -  

Let J1(2) be the cost co r re -  

1 -  -1 -0 

Then the incremental  change in the cost 6 J  defined a s  

6 J  = Jl(rr,) - J(x 
-0 

can be expressed to first o rde r  as 

(6 .2.6)  

(6 .2 .7 )  
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where L is evaluated along the nominal t ra jectory - x(t) .  The second 

t e r m  in  the above integrand is already in the fo rm of a Frgchet deriv- 

ative (i. e .  , a function of - x(t) t imes 6U [x(t)] - ); the only remaining task 

-X 

is to convert the first term into this form. 

First, we need to establish a.n identity. F r o m  Equations (6 .2 .  l ) ,  

(6.2.3), and (6 .2 .  5) it follows that to first o rde r  

- h(t) = -x F - h(t) t - b bU[x(t)] - v t c  [0,00) (6 .2 .  8) 

where F is evaluated along the nominal t ra jectory - x(t) .  Integrating 

Equation ( 6 . 2 .  8) f rom 0 to t yields 

-X 

t t 

( 6 . 2 . 9 )  
0 0 

Since U(x) i s  asymptotically stable and 6U (x) is an  infinitesimal var i -  

ation with 6U(O) = 0, U (x) must also be asymptotically stable. There- 

fore, x(oo) = x (m) = - 0 and - h(m) = - 0. 

1 -  - 

1 -  - 

Thus, it follows that -1 - 

00 00 

(6.2.10) 

0 0 

In Section 2 . 3  we established that the equation describing the prop- 

agation of the costate variable e(t) defined a s  

(6.2.11) 

along a t ra jectory - x(t) resulting f rom a feedback control law U ( x )  - i s  
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Taking the inner product of both s ides  of this equation with - h(t) and 

integrating f rom zero  to infinity gives 

a3 00 

0 0 

( 6 . 2 . 1 3 )  

Integrating the third integral  by par t s  and regrouping terms gives 

00 t a3 

(6.2.14) 

Using the identity established by Equation (6.2.9)  to convert the second 

integral  into the equivalent fo rm indicated below and then integrating it 

by par t s  gives 

00 t 

0 0 0 

Inserting this expression into Equation (6.2. 14) and observing 

(6.2.15) 

that the 

las t  t e r m  in Equation (6.2.14)  is the negative of the last t e r m  in Equa- 

tion (6.2.  15) as indicated by Equation (6.2. l o ) ,  one finally obtains 

00 a3 

Inserting the above expression into Equation (6.2.7)  gives the co r rec t  

expression for  the feedback Frgchet  derivative 
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(6.2.17) 

where E(t) satisfies the differential equation 

(6.2.18) 

The gradient of the cost with respect to U[x(t)] - is merely that portion 

of the integrand of the Frgchet derivative which multiplies GU[x(t)] - ; 

thus, it is given by the following expression 

for a l l  points along the t ra jectory - x(t). 

It should be noted that the derivation and expression for  the feed- 

back FrGchet derivative will reduce to that of the conventional open-loop 

Frgchet derivative i f  the state dependence of the control U ( x )  - is removed 

(i. e .  , if the partial  derivative of the control with respect to - x is set  

equal to zero)  and the t e r m s  U[x(t)] and 6U[x(t)] - are interpreted as u(t) 

and h(t) respectively. The Frgchet derivative, Equation (6.2.17), is 

formally the same in the two cases:  however, the values of e(t) a r e  

different since the differential equations for  the propagation of E(t) differ. 

45 The preceeding resul ts  should be compared with those of Jacobson 

who has  developed both first and second o rde r  algorithms for  computing 

the unconstrained optimal control for  single t ra jectory problems from a 

feedback (Differential Dynamic Programming) viewpoint. Jacobson f i r s t  

formulates a second o rde r  algorithm and then obtains a first o rde r  algo- 



-107- 

r i thm by setting all second o rde r  t e r m s  to zero.  

in the resulting first o rde r  algorithm i s  identical with that derived above 

The gradient function 

a U[x(t)l except for  the fact that the t e r m  appearing in the differential a x  - 
equation for p(t), Equation (6.2.18), is set  equal t o  zero because his 

procedure for  evaluating a U[x(t)' requires  second o rde r  t e rms .  There-  ax 
fore, Jacobson's f irst  o rde r  algorithm does not utilize a "correct" 

expression for the pradient function. Nevertheless, this approach is 

feasible for  unconstrained optimization problems since this approxima- 

tion converges to the cor rec t  expression for  the gradient as the optimum 

is  approached; hence, his  first o rde r  algorithm can be expected t o  con- 

verge to the cor rec t  unconstrained optimal control. 

Jacobson's first o rde r  algorithm can not be used for structurally con- 

strained optimization problems in which the unconstrained optimal con- 

t ro l  is not a member of the constraint set  since its gradient is incorrect 

everywhere except in the vicinity of the unconstrained optimum. 

In contradistinction, 

In his 

second o rde r  algorithm, however, Jacobson uses  Equation (6.2.18) with 

a u[x(t)l included for  propagating p(t). Thus the co r rec t  expression for  ax 
the feedback gradient is a hybrid of Jacobson's first and second o rde r  

algorithms. Fortunately, in the case of s t ructural  constraints of the 

S(M, N,  K )  type (where the co r rec t  expression for the gradient must be 

used i f  convergence to the optimal constrained solution i s  desired) ,  one 

a U[XI 
a 5  can compute simple analytic expressions for - f rom the expression 

specifying the s t ruc tura l  constraint; thus, no second o rde r  t e rms  need 
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to be computed o r  propagated in o rde r  to compute the cor rec t  expression 

for the feedback gradient. 

6 . 3  Algorithm for  the Optimal Solution of the SCOCP 

An explicit computational algorithm for  solving the SCOCP with a 

quantized initial condition probability distribution is developed in this 

section. 

and should converge to the optimal constrained solution. 

The algorithm does not require any precomputed information 

First, we must convert the cost  functional of the SCOCP 

<J> = I J(x) Qo($) (6.3.1) 

0 
Q 

into a form which is compatible with the gradient projection algorithm. 

As in Chapter V ,  we must use a quantized initial condition probability 

distribution Q (x) since no computationally feasible equations exist for 

propagating Q (x) with nonlinear dynamics. The distribution Q (x) was 

defined in Definition 5.3. With this res t r ic t ion the cost functional can 

A 

0 -  
A A 

0- 0 -  

be expressed as  

a 

(6.3.2) 

k= 1 

If there  is a variation 6U(x) - in the feedback control law U(x),  - it follows 

from the resul ts  of the previous section that the corresponding variation 

in the cost functional is given by 

(6 .3.3)  
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whe r e  

00 

The function x (t) is the t ra jectory generated by U(x) - f rom the initial 

condition x 

Chapter I11 that 

-k 
and xk(t) is  its costate variable. Since we established in -k 

Equation (6.3.4) can be expressed as 

00 

where we define 

(6.3. 5) 

(6.3.6) 

( 6 . 3 . 7 )  

The expression for 6J(x ) can be converted f rom an  integral  over -k 
time into an integral over  the a r c  length of the t ra jectory a s  was done 

in Section 5.2.  Using the notation defined there we can express  6J(xk) 

as 

To simplify notation, the function E(x)  - will be defined a s  

(6.3.9) 

Therefore the expression for 6<J> becomes 
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By utilizing the Newton-Cote s integration formulas to approximate 

the t ra jectory integrals,  the variation in the cost  functional 6 (J) can 

be converted into a summation of a sca la r  function over a finite se t  of 

grid points. This same technique was utilized in  the SDP2 algorithm. 

These integration formulas replace the integral  by a weighted sum of 

the values of the integrand a t  equally spaced points along the integration 

range a s  indicated 

(6.3.11) 

a j  = p j  L (6.3. 1 2 )  

and W.(p)  i s  a prespecified weighting function dependent only on the 

index j and p, the number of intervals between the p t 1 data points. 
J 

If the Newton-Cotes integration formula with f.3 t 1 equally spaced 

data points i s  used f o r  each of the t ra jector ies ,  6<J> can be expressed 

as 

where L(xk) i s  the length of the kth t ra jectory starting f rom the initial 

condition x and x is the jth data point along this t ra jectory.  The 
-k -k, j 
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above expression can be placed in a more convenient form if  a single 

index i is used to label each of the grid points. Each value of i will 

have a unique, one-to-one correspondence with each index pair  (k,  j )  

as  specified by the formula 

i = a ( k - 1 )  t j  t 1 

We define 

r = a ( P + l )  

Then 6<J> may be expressed in  the new notation a s  

d<J> = G($ 6U(x.) -1 

(6 .3 .  14) 

(6 .3 .15)  

( 6 . 3 . 1 6 )  

( 6 . 3 .  17) 

(6 .3 .18 )  

i= 1 

which is the required form for  using the gradient projection algorithm. 

The function G(zi) will be called the state space gradient function 

since it directly indicates the rate  of change of the cost with respect to 

a change in the sca la r  value of the control a t  each grid point. 

ceeding notation may be condensed into the following formula for  eval- 

uating G ( x )  at each grid point. 

The pre-  

QiLiWi 
P -1 - -1 G(xi) = 

whe r e  

(6.3.19) 
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A 

Qi is the probability associated b y Q  (E)  with the initial 

condition of the tyajectory containing -i’ x 
0 

L. is the length of the t ra jectory containing xi, 

Wi is the value of the Newton-Cotes weighting function 

associated with x. and 

1 

-1’ 

f3 is the number of intervals between the f3 t 1 grid points 

of each t ra jectory.  

The quantities Qi, Wi, and p a r e  prespecified constants and do not 

have to be evaluated. 

erated to compute the grid points. 

an analytic form, they can be directly evaluated at each grid point. 

only t e r m  in the formula for  G(x.1 which is difficult to evaluate is  

L. could be evaluated a s  each t ra jectory is gen- 
1 

Since -- f(x) and U(x) - a r e  available in 

Tke 

-1 

a J(x) P(x) = - ax -- (6.3.20) 

There a r e  two possible methods of evaluating P(x.). First, J(x) - - -1 
could be evaluated at  each grid point as the t ra jector ies  were computed. 

Then a numerical  differentiatio 

However, such formulas have large e r r o r  bounds and it is ve ry  doubtful 

if accurate resul ts  could be obtained. 

recommend this approach. 

€ormula could be used to estimate P(x.). - -1 

Therefore, the author does not 

A better procedure would be to use the differential equation for the 

propagation of p( t ) ,  Equation (6.2.18), to compute P(x.) at each grid 

point. 

technique and can be applied in this application as follows. 

-1 

This approach is used in the conventional open-loop gradient 

One would 
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select a te rmina l  time T sufficiently large s o  that a l l  t ra jector ies  

would be very close to the origin at t = T. 

a linear quadratic approximation to the SCOCP dynamics and cost  func- 

tional would be constructed. The cost J(x) - for this approximation 

could be expressed as 

In the vicinity of the origin 

A 

(6.3.21) A 1 
J($ = T<E?MZ> 

for which 
A 
P(x) = M x (6 .3 .22)  -- -- 

A 
- P(2) should provide a reasonably good estimate for  -- P(x) in the vicinity 

of the origin. Thus, it could be used to evaluate p(T)  for  each t ra jec-  

to ry  and by integrating Equation (6.2.18) backwards in t ime, the value 

of P(x.) could be computed at each grid point. - -1 
We shall use the latter procedure for  evaluating P(x.)  in the fol- - -1 

lowing algorithm which can be used to solve the SCOCP. 

Algorithm for  the Solution of the SCOCP 

Select an  appropriate set  of quantized initial conditions which 

approximate Q (x); select  p,  the number of intervals used in 

the Newton-Cotes integration formulas;  and select  the terminal  

t ime T .  

0 -  

Set the iteration index j to 0 and start with some initial con- 

t ro l  law Us [g,so] E S(M, N, K ) .  

Using Us[x,c,]  

tized initial conditions and determine the set of grid points 

{xi, i E R}. 

generate a t ra jectory for  each of the quan- 
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In the manner discussed, use Equation (6 .2 .18)  to propagate 

p(t) along each t ra jectory to compute P(x.) a t  each grid 

point . 
1 - 

Use Equation (6 .3 .19)  to evaluate G(x.) a t  each grid point. 
-1 

Compute 6c 

Determine the optimal value of a , a , for which the cost 

with the gradient projection algorithm. 
-Q 

.b -8- 

Q Q  q(sQ - a Q  &Q> will be a minimum. 

0. ' P  

Set c = c - a 6c and increment the index Q by 1. 
-Q+1 -Q Q -Q 

Evaluate some preselected termination cr i ter ion and then 

either re turn to step 3 o r  stop a s  indicated. 

6 . 4  Characterist ics of the Algorithm 

The algorithm developed in the preceeding section has two major  

advantages over the suboptimal design procedures of Chapter V .  First, 

it is a n  optimal design procedure; hence, it will produce a better system 

design than the suboptimal techniques. 

numerical values of U".(x) - as a function of the state.  Since computing 

U-(x) - is  a major task, this is a significant advantage. 

Second, it does not require the 
.L 

4. 

The major  disadvantage of the algorithm is its extensive computa- 

tional requirements. Twice as  many t ra jector ies  must  be generated to 

evaluate the gradient function a s  in the SDP2 algorithm. 

of t ra jector ies  must be generated in the process  of evaluating a*'*. 

author would estimate that each iteration would require f rom 3 to 5 t imes 

Additional sets  
.e, 

The 
Q 

as much computational t ime a s  that for each iteration of the SDP2 algo- 
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ri thm. Nevertheless, it should be computationally feasible for problems 

having up to four state variabl-s i f  the number of quantized initial con- 

ditions is limited to 50 points. 

6 .5  A Two-Dimensional Example 

In this section a simple two-dimensional example is presented 

which i l lustrates the application of bath the gradient projection algorithm 

and the optimal algorithm for solving the SCOCP. We shall consider the 

dynamical system 

x1 - - x2 

and cost  functional 

00 

J = I [xl 2 + 2,: + u  2 ]d t  2 
0 

(6. 5.1) 

(6 .  5 .2)  

The optimal feedback control law fo.r this problem is 

:: u (2) = - x l  - 2 x 2  (6.5.3)  

Now we impose the s t ructural  constraint that the control law must  

be of the form 

Us@) = - KIXl f x21 (6 .  5.4) 

:: 
where K may be any positive constant. Clearly, U (x) - is not a member 

of this constraint set. 

s ider  the single t ra jectory problem for  which the initial condition is the 

point (x 

F o r  simplicity of presentation, we shall  only con- 

A % ); the general  case  is  mere lya  sum of such problems. 1’ 2 
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F i r s t ,  we shall  determine the solution to this problem (i. e . ,  the 

equation for  K1', the value of K which minimizes the cost,in terms of 

x1 and x  ̂ ) by the simplest  possible method; then, we will demonstrate 

that application of the algorithm of Section 6.3 will lead to the same 

result .  The expression for  the cost  in t e r m s  of K, x and f: can be 

determined in the following manner.  Compute the Laplace t ransform 

of the t ime functions x (t) and xz( t )  which would resul t  f rom driving 

the dynamical system of Equation (6. 5 .1)  with the control law of Equa- 

tion (6. 5 .4)  f rom the initial condition (c l ,  G2).  Then, Parseva l ' s  theo- 

r e m  can be used to obtain a n  expression fo r  the cost in  t e r m s  of integrals 

of these Laplace t ransforms.  

Gould, and Kaiser  55 can be used to evaluate these integrals directly.  

.L 

A 
2 

A 

1' 2 

1 

The integral  tables in Appendix F of Newton, 

The resulting expression for  the cost is 

-1 A 2  1 -2  A 2  A A  
J[xl ,x2,K] = [ K t 3 t K  ] x l  t [ K + l t Z K -  t K  ]x, t [ 2 K t 2 K - 1 ] ~ 1 $ 2 }  

(6.5.  5) 
.I- 

The equation for  K.'' i s  

(6 .5 .6)  

It can be shown that the above equation has  one and only one real solution 

which is always positive. 

Pl(x, K )  and P,(x, K)  are  

The expressions for  the costate variables 

P , ( x , K )  = - [ K t 3 t K -  1 1 ]x1 t z [ K t K  1 -1 ]x, 
2 ( 6 .  5 . 7 )  
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1 -1 - 2  1 -1 P 2 ( z , K )  = z [ K t l t 2 K  t K  ] x Z  t Z [ K t K  ] x l  

(6 .  5. 8) 

By directly computing their t ime derivative along any t ra jectory of the 

dynamical system of Equation (6.5.1)  driven by the control law of Equa- 

tion (6 .5 .4) ,  one can verify that the equation for the propagation of the 

costate variable, Equation (6.2.18), is cor rec t  for this example. 

Now we wish to demonstrate that the algorithm of Section 6.3 will 

lead to the same result .  Since this example is being solved analytically, 

the integrals can and will be evaluated precisely instead of approximated 

by the Newton-Cotes integration formulas.  Thus, instead of using the 

approximate expression for 6<J> of Equation (6.3.18) 

6<J> = 2 G(x.) -1 6U(x . )  -1 

i= 1 

we shall use the exact expression of Equation (6.3.10) 

where 

and 

(6.  5 .9 )  

(6.5.10) 

(6.5.11) 

Correspondingly, instead of using the quantized solution to the gradient 

projection algorithm of Equation (4,4,42)  
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r 

dc = x G ( z i )  D.[x., c] 
J -1 - j 

i= 1 

we shall use the integral  solution 

(6. 5.13) 

(6. 5.14) 

Suppose that we a r e  given any control law 

U s -  (x) = - K(xl  tx,)  ; K > 0 (6. 5.15) 

We can evaluate the gradient function G(x) - for  this control law f rom 

Equation (6. 5.11). Since = [0 ,  13, it follows f rom Equations (6.  5.15) T 

and (6. 5. 8) that 

- G(x) = [ I I&/l]-1{[-Ktl t2K- 1 2  t K -  ] x 2  t [ - K t K - ' ] x l  2 - 

(6. 5.16) 

Since there  is only one coefficient K to vary,  we identify c1 = K and 

dc = 6K and compute D [ x ( j ) ,  c] . 1 I -  - 

(6. 5. 17) 

Inserting Equations (6.  5.16) and (6. 5.17) into (6. 5 .14)  yields 

t ( -  K t 1 t 2 K - I  t K - 2 ) x , ( i ) ]  d j  (6. 5. 18) 
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Converting from an integral  over the a r c  length of the trajectory to an  

integral over  time gives 

6K = --!- [ {[-KtK-l]x;( t )  t [ - K t l t 2 K - ' t K  -2 ]x2(t)  2 
2 

0 

+ [ -2K f 1 + 3K-I  t K-2] x1 (t) x2(t)} dt (6. 5.19) 

If the above integrals are evaluated (by the Laplace t ransform technique 

described previously) along the trajectory generated by the dynamical 

system of Equation (6. 5.1) driven by the control law of Equation (6. 5 .15)  

f rom the initial condition (xl, A A  the resul t  is 

6K = 7 1 {(xhl t 6 , ) 2 K 3  - [(x, A t x 2 )  A 2 h 2  t x 2 ] K  - [2xz]} A 2  (6.5.20) 
4K 

Comparing this with Equation 

A A  a J[x,, x3, 

(6.5.6) we conclude 

(6. 5.21) 

a s  was the claim of the gradient projection algorithm. 

points in the direction of steepest  descent in the coefficient space and i s  

zero only at  the optimal solution K".y convergence to this optimal solution 

is guaranteed for  this problem. 

Since -6K always 

d. 

The preceeding example was solved analytically to avoid numerical 

approximations. 

the integrals, the essential  "logic" of the algorithms was preserved 

and their  validity demonstrated. 

Although time domain methods were used to evaluate 



C m P T E R  VIL 

STABILITY ANALYSIS 

7.1 Introduction 

This chapter is concerned with formulating a n  explicit computational 

algorithm for  solving the stability problem. 

in Section 7 . 2 .  

which i l lustrates  the application of the algorithm and the properties of the 

stability bounds. 

The algorithm is developed 

A two-dimensional example is presented in Section 7 . 3  

7 . 2  Solution of the Stability Problem 

In this section we shall  state a n  explicit computational algorithm 

for solving the stability problem formulated in Chapter 11. 

is a direct  application of Theorem 3. 5 of Chapter 111. 

This algorithm 

Stability Problem Algorithm 
4, 

Select a SOP with optimal feedback control U ’ ( x )  - and optimal cost  

4. 

Determine y = Max [J*’(z)J 
- x c Q  

a, 

Define the set  i2 = (2: 

Select the implementation set  I = {x: Ii < x.  < I. ; i = 1, 
A 

where the 2n sca l a r s  Ii and Ii a r e  defined as  

J*r(g) f Y }  

A 
. , n} 1 -  1 - - 

A 
I. < Min [xi! 
1 -  - X € s 2  

I .  > Max [xi] 
X € Q  

1 -  
- 

-120-  
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5) Compute the stability bounds T(2) and B(x) - for all - x E i2 f rom 

Equations (3. 5.26) and (3.5.27).  

6)  Use Theorem 3. 5 to conclude asymptotic stability for the system 

k = f (x)  t b U (x) for  all t ra jector ies  starting from initial conditions 
s -  - -- - 

x ~ Q i f  
-0 

The stability algorithm requires  the numerical  values of both the 
4. 4- 

optimal control U“(x) - and the optimal cost J?’(X) - as a function of the 

state; the author assumes  that this information would be available in a 

standard dynamic programming table. The values of J.’’(x) - are  only 

needed to specify I; the values of U*‘(fi) a r e  sufficient to compute the 

.b 

.t. 

stability bounds. 

stability bounds only requires  the evaluation of a simple mathematical 

Since the process  of specifying I and evaluating the 

expression a t  each data point, the computational time required to per -  

form the algorithm should be extremely small .  

The preceeding algorithm was based on Theorem 3 .5  and is the 

best  resul t  which can be obtained with the techniques developed in this 

chapter for  establishing stability bounds. However for  any particular 

Us(x),  say U (x), the size of the implementation se t  I1 as  determined 1 -  

by this algorithm will usually be somewhat la rger  than necessary.  One 

would like to be able to determine the implementation set  of minimal 

size I I for  which the system k = f (x)  t b  U (x) would have asymptotic 
A 

- 1 -  - -- 1 1 

stability for all xo E Q. 
A 

one can determine !d 

Theorem 3.6 can be used to establish this i f  

the region of the state space actually spanned by 1 ’  
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a l l  t ra jector ies  of this system starting f r o m  each and every initial con- 
A 

dition x E Q. A determination of S2 can usually be accomplished by 

generating a few trajector ies  starting f rom cr i t ica l  initial conditions on 

-0 1 

the boundry of Q and utilizing the fact that t ra jector ies  can never inter-  

sect .  However, developing an explicit, efficient procedure for  de te r -  
A 

mining a 
under consideration and will not be pursued fur ther  in this thesis.  

depends strongly on the pecularities of the particular problem 1 

7 . 3  A Two-Dimensional Example 

In o rde r  to i l lustrate the application of the preceeding algorithm 

a s  well a s  provide an indication of the nature of the stability bounds, the 

following example is presented. Consider the dynamical system 

x = x2 1 

k2 = U(2) 

and the cost functional 

[t;.-, 2 + Z U  1 2  (x - 

0 

with 

for which 

and 

.L 

f ( X )  L = - x1 - 2x2 

2 2  
1 2 1 2  

.e. 

J''.(x) = x t x t x x 
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It is  readily established that 

Hence 

2 2  t x  t x x  < 4 8 }  2 1 2 -  L? = {x: - x1 

and f rom the plot of Q and 52 shown in Figure 7 .1 ,  it is evident that a 

reasonable choice for  the implementation set I would be I = (x: -8  < x < 8; 

-8 - < x2 - < 8 ) .  

by the following expressions 

(5: Ilxll = o> 

1 2  

- 1 -  

The stability bounds can be readily computed and a r e  given 

- 

T(g) = 0 B(x) - = 0 

{x: -x -2x  = 0 ;  IIxII # 0) T(2) = t 03 B(2) = - 00 - 

whe r e  

The implementation set I is again shown in Figure 7 . 2 .  

represents  the locus U'(x) = 0 = -x -2x2 ; U (2) is negative at a l l  1 

points above and to the right of this line and positive a t  all points below 

and to the left. Four  additional lines denoted A, B, C,  and D a r e  also 

The dashed line 
.I. 'P .L 

- 

indicated. F o r  each of these lines the stability bounds T(x) - and B(x) - 

along with the optimal control U"(x) - a r e  plotted in Figure 7 . 3 .  Any con- 

t r o l  U (x) which does not en ter  a shaded area will produce on asymptoti- 

cally stable system. 

character is t ics  of the stability bounds (discussed in  Section 3 , 6 )  and a r e  

.L 

s -  

The plots in Figure 7 . 3  i l lustrate the important 
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typical of the resul ts  one can expect for  a general  system. 

a r e  generally quite broad and establish asymptotic stability for a wide 

variety of suboptimal controls. In particular,  any U (x) which is uni- 

formly "close" to U'(x) - over the control space can be expected to be 

asymptotically stable, thus justifying design procedures based on fitting 

The bounds 

s -  
.L 

4. 

u (x) to V--(X). - s -  



- 1 2 5 -  

IN 

Figure 7.1 Plot of Q, Q a n d  I 

F i g u r e  7.2 The I m p l e m e n t a t i o n  Set I 
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LINE A [x2=+8] LINE. 6 [ x 2 = t 2 ]  

Figure 7.3 Stability Bounds 



CHAPTER VI11 

SUMMARY AND CONCLUSIONS 

The design of practical ,  easily implemented, feedback controllers 

for nonlinear dynamical systems has been considered in this thesis.  

Structural  constraints which restrict the feedback control law to belong 

to specific c lasses  of feedback s t ructures  were introduced and imposed 

upon the optimization problem in o r d e r  to guarantee that every control 

law designed subject to these constraints would be in a form fo r  which 

there is a simple and direct  means of implementation. 

constrained optimal control problem (SCOCP) was formulated and the 

specific peculiarities which result  f rom the imposition of s t ructural  con- 

s t ra ints  upon optimization problems were analyzed and discussed. 

The structurally 

The major  theoretical  contributions of the thesis were developed 

in Chapter 111 where we investigated cer ta in  properties of optimal and 

Suboptimal systems.  

not only provide considerable insight into the properties of suboptimal 

control systems but, in addition, provide a d i rec t  basis for constructing 

a var ie ty  or' suboptimal design procedures.  First, a simple mathematical 

expression relating the suboptimality of a control law to the corresponding 

suboptimality of its cost  was derived and used to establish a bound on the 

suboptimal cost  as stated in  Theorem 3 .1 .  The importance of this bound 

becomes evident when specific numerical  values a r e  considered - for  

Two significant resul ts  were established which 

example, a suboptimal 

optimal will produce a 

control which is everywhere within 10% of the 

suboptimal cost  which is everwhere l e s s  than 

-127- 
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1.25% above the optimal cost. 

scalar  stability bounds which specify a t  each and every point in the state 

space a ranpe over  which the scalar  suboptimal control can vary and 

c st i l l  produce a system which is asymptotically stable. These stability 

bounds were used to prove Theorem 3.2 which guarantees "asymptotic 

stability if  U (0)  = 0 and U (x) has everywhere the same polarity and 

at  least  half the magnitude of U'"(x)''. - 

Second, we established the existence of 

s -  s -  
.I. 

This theorem and the stability 

bounds f rom which it was derived clearly demonstrate the wide range 

over which the scalar  value of a suboptimal control can vary and still 

produce an  asymptotically stable system. The significance of these 

resul ts  is twofold: First, they provide a riqorous justification f o r  using 

suboptimal controls - and suboptimal design procedures;  second, they 

provide an explicit bound for evaluating the extent o r  degree of this sub- 

optimality. The final portion of this chapter was devoted to proving 

Theorem 3 .3  (which establishes that all optimal SOP systems have c e r -  

tain stability properties in common) and exploring the implications of 

this theorem. 

Algorithms for the optimal and suboptimal solution of the SCOCP 

were developed in Chapters V and VI. 

cedures were formulated; both require the numerical  value of U"(x) - 

precomputed input data. The SDPl algorithm requires  only a relatively 

minor amount of computation and has  produced control laws whose cost 

Two basic suboptimal design p ro -  
.L 

was found to be within 2% of the optimal constrained cost  in a l l  of the 

cases  tested.  However, it is rest r ic ted to problem formulations in 

which Q (x) will generate t ra jector ies  which tend to be uniformly d i s -  

tributed throughout C2 a The SDP2 algorithm i s  valid for  completely 

0 -  

0 
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general  initial condition probability distributions. 

t ro l  laws whose cost was found to be within . 570 of the optimal constrained 

It has produced con- 

cost in all of the cases  tested; however, the computational requirements 

of this algorithm are substantially greater  (by a factor of 5 to 10) than 

those of the SDP1 algorithm. Unlike the suboptimal techniques, the 

optimal design procedure does not require the numerical  values of U (x) - 
<: 

o r  any other precomputed information and should converge to the optimal 

constrained solution. However, its computational requirements a r e  

extensive - f rom 3 to 5 t imes those of the SDP2 algorithm. 

The author has drawn two major conclusions f rom this research .  

First, the utilization of suboptimal control laws and suboptimal design 

procedures  a r e  definitely justified for  optimal control problems of the 

SCOCP type. Second, the incorporation of s t ructural  constraints directly 

into the optimization problem is not only possible but computationally 

feasible: hence, it is possible to determine solutions to the optimization 

problem in a "meaningful" fo rm which can be directly used to implement 

the control law. 

There a r e  numerous extentions and applications of the theory devel- 

oped in this thesis which mer i t  fur ther  investigation. 

purely theoretical  to entirely numerical  studies 

these additional r e sea rch  problems while categorizing them for  the bene- 

They range f rom 

We shall enumerate 

f i t  of future investigators. 

THE ORE TICAL STUDLl3S 

1) Vector Control Problem 

The SCOCP problem formulation considered in this thesis  was 
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res t r ic ted to sca la r  controls. 

by considering dynamical systems of the fo rm 

It can be generalized to the vector case 

& = f(x) t B U(x) - _ -  --- 

whe re 

x and - f a r e  n vectors 

U is an  m vector 

B is an  n x m matrix 

- 

- 

- 

with cost  functionals 

One should be able to follow the approach of Chapter I11 to develop equiv- 

alent resul ts  f o r  the vector case.  

r e m  3 . 4  would remain valid if the cost functional J2 were converted to 

The author would conjecture that Theo- 

J o L  

and that Theorem 3.1 would also remain valid i f  the condition specifying 

y were changed to 

Similiarly, he would also conjecture that stability bounds of the form 

could be developed for  establishing the asymptotic stability of such sys-  

tems, 

by the author. 

The validity of these conjectures i s  currently under investigation 
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In addition, one should be able to extend a l l  of the optimal and sub- 

optimal design procedures to the vector case.  

S(M, N,  K )  structure would be required for implementing each component 

Of course,  a separate 

of the control law. This remains a topic for future research.  

2)  Finite Time Problem 

Suppose the infinite time SCOCP problem formulation were changed 

into that of a f ree  end-point, finite t ime problem. It would be of consid- 

erable interest  to determine which, if any, of the theorems of Chapter I11 

could be converted into equivalent results which would be applicable to 

this finite time problem. 

3 )  Inverse Problem for  Optimal SOP Systems 

In Section 3 . 8  we investigated the extent to which Theorem 3 . 3  

could be used to characterize optimal SOP systems and concluded that it 

was a necessary but not sufficient condition. Nevertheless, the charac- 

terization was quite strong and came close to solving the "inverse prob- 

lem of optimal control for  SOP systems". 

remain. 

mine whether extensions of the theory developed in this thesis can be 

used to e i ther  solve the "inverse problem" o r  deduce additional properties 

of optimal SOP systems.  

Many unanswered questions 

The author believes that fur ther  research  is needed to  deter-  

4) Stability Theory 

A problem which has  attracted considerable interest  in the l i ter-  

a ture  of the last few years  is that of determining the stability of feedback 

systems containing a single, time-varying, nonlinear element a s  shown 

in Figure 8. 1. 
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Figure 8.1 N o n l i n e a r  Feedback System 

does not enter  o r  encircle the circle  whose If the t ransfer  function 

diameter extends f rom the point s = 0 to s = - a, then Kalman's solution 
u(s) 

T to the inverse problem of optimal control states that y y  = y c  - -  x is the 

optimal feedback control law for  some linear quadratic problem for all 

y 2 ; . 2 Using Theorem 3 -3 ,  we can prove that the above system will 

be ASIL for  a l l  F[ , t] satisfying 

E.LLL>- 1 
a - 0- 

50 The above result  is identical with the Circle Theorem of I. W.  Sandberg. 

However, if the stability bounds of Theorem 3 . 5  and 3.6 a r e  used instead 

of using Theorem 3.3 (where the t e r m  

was se t  t o  zero) ,  a stronger resul t  than the Circle Theorem can be 

obtained. An investigation of the applicability of this procedure should 

prove an interesting topic for  future research .  
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NUMERICAL STUDIES 

1) Computerize Algorithms 

Develop a computer program for  the SDP1, SDP2, and optimal 

algorithms. Determine the best  method for  generating the system t r a -  

jector ies .  

a table giving a n  estimate of the computational t ime required by each 

algorithm a s  a function of the number of state variables and initial con- 

dition quantizations. 

Test- the algorithms on a number of problems and construct 

2)  Analyze S(M, N, K )  Structures 

Use the computer programs to solve the same optimization prob- 

lems fo r  a variety of the S(M, N, K)  s t ructures .  

s t ructures  produce the best  resul ts  with the least  complexity. 

correlate  the various s t ructures  with the types of control laws o r  con- 

t ro l  problems for  which they a r e  best  suited. 

Try  to  determine which 

Try  to 

3) Hybrid Algorithm 

Develop a computer program for the algorithm obtained by com- 

bining the SDPl and SDP2 algorithms in the manner indicated in Section 

5 .6  on page 101. 

with those of the SDPl ar_d SDP2 algorithms. 

Compare its computational requirements and accuracy 

The previous suggestions a r e  by no means exhaustive of the possible 

extentions of this thesis ;  they a r e  intended merely to indicate some of the 

more attractive possibilities. 
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